Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism

[1]  S. Horvath,et al.  Author Correction: Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism , 2018, Nature.

[2]  Alan C. Evans,et al.  Brain connectivity in normally developing children and adolescents , 2016, NeuroImage.

[3]  David A. Knowles,et al.  RNA splicing is a primary link between genetic variation and disease , 2016, Science.

[4]  D. Geschwind,et al.  Advancing the understanding of autism disease mechanisms through genetics , 2016, Nature Medicine.

[5]  G. Fishell,et al.  Unifying Views of Autism Spectrum Disorders: A Consideration of Autoregulatory Feedback Loops , 2016, Neuron.

[6]  C. Spencer,et al.  A contribution of novel CNVs to schizophrenia from a genome-wide study of 41,321 subjects: CNV Analysis Group and the Schizophrenia Working Group of the Psychiatric Genomics Consortium , 2016, bioRxiv.

[7]  Jakob Grove,et al.  Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population , 2015, Nature Genetics.

[8]  Christopher S. Poultney,et al.  Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci , 2015, Neuron.

[9]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[10]  Anne-Claude Gingras,et al.  An alternative splicing event amplifies evolutionary differences between vertebrates , 2015, Science.

[11]  Judy H. Cho,et al.  Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations , 2015, Nature Genetics.

[12]  S. Rafii,et al.  Critical Role of Histone Turnover in Neuronal Transcription and Plasticity , 2015, Neuron.

[13]  J. Vandesompele,et al.  An update on LNCipedia: a database for annotated human lncRNA sequences , 2015, Nucleic Acids Res..

[14]  Robert J. Weatheritt,et al.  A Highly Conserved Program of Neuronal Microexons Is Misregulated in Autistic Brains , 2014, Cell.

[15]  Shannon E. Ellis,et al.  Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism , 2014, Nature Communications.

[16]  Leonardo Collado-Torres,et al.  Developmental regulation of human cortex transcription and its clinical relevance at base resolution , 2014, Nature Neuroscience.

[17]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[18]  Boris Yamrom,et al.  The contribution of de novo coding mutations to autism spectrum disorder , 2014, Nature.

[19]  Jernej Ule,et al.  A global regulatory mechanism for activating an exon network required for neurogenesis. , 2014, Molecular cell.

[20]  T. Maniatis,et al.  An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex , 2014, The Journal of Neuroscience.

[21]  Sanghyuk Lee,et al.  lncRNAtor: a comprehensive resource for functional investigation of long non-coding RNAs , 2014, Bioinform..

[22]  A. Quinlan BEDTools: The Swiss‐Army Tool for Genome Feature Analysis , 2014, Current protocols in bioinformatics.

[23]  Sheng Li,et al.  Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study , 2014, Nature Biotechnology.

[24]  David P. Kreil,et al.  A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium , 2014, Nature Biotechnology.

[25]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[26]  Stephan J Sanders,et al.  A framework for the interpretation of de novo mutation in human disease , 2014, Nature Genetics.

[27]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[28]  Kathryn Roeder,et al.  Most genetic risk for autism resides with common variation , 2014, Nature Genetics.

[29]  K. Roeder,et al.  Transcriptional consequences of 16p11.2 deletion and duplication in mouse cortex and multiplex autism families. , 2014, American journal of human genetics.

[30]  Michael Q. Zhang,et al.  HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. , 2014, Cell reports.

[31]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[32]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[33]  Frank Grützner,et al.  The evolution of lncRNA repertoires and expression patterns in tetrapods , 2014, Nature.

[34]  Hui Zhou,et al.  starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data , 2013, Nucleic Acids Res..

[35]  S. Horvath,et al.  Integrative Functional Genomic Analyses Implicate Specific Molecular Pathways and Circuits in Autism , 2013, Cell.

[36]  Wei Niu,et al.  Coexpression Networks Implicate Human Midfetal Deep Cortical Projection Neurons in the Pathogenesis of Autism , 2013, Cell.

[37]  David Haussler,et al.  Current status and new features of the Consensus Coding Sequence database , 2013, Nucleic Acids Res..

[38]  Gene W. Yeo,et al.  Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges , 2013, Nature Structural &Molecular Biology.

[39]  Tanya M. Teslovich,et al.  Discovery and refinement of loci associated with lipid levels , 2013, Nature Genetics.

[40]  Michael Q. Zhang,et al.  Epigenomic Analysis of Multilineage Differentiation of Human Embryonic Stem Cells , 2013, Cell.

[41]  Michael Q. Zhang,et al.  OLego: fast and sensitive mapping of spliced mRNA-Seq reads using small seeds , 2013, Nucleic acids research.

[42]  M. Gill,et al.  Development of Strategies for SNP Detection in RNA-Seq Data: Application to Lymphoblastoid Cell Lines and Evaluation Using 1000 Genomes Data , 2013, PloS one.

[43]  P. Visscher,et al.  Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease , 2013, Nature Genetics.

[44]  Lilia M. Iakoucheva,et al.  Whole-Genome Sequencing in Autism Identifies Hot Spots for De Novo Germline Mutation , 2012, Cell.

[45]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[46]  Lydia Ng,et al.  Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system , 2012, Nucleic Acids Res..

[47]  Xing Chen,et al.  LncRNADisease: a database for long-non-coding RNA-associated diseases , 2012, Nucleic Acids Res..

[48]  Lennart Martens,et al.  LNCipedia: a database for annotated human lncRNA transcript sequences and structures , 2012, Nucleic Acids Res..

[49]  Tanya M. Teslovich,et al.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes , 2012, Nature Genetics.

[50]  Peter Langfelder,et al.  Network methods for describing sample relationships in genomic datasets: application to Huntington’s disease , 2012, BMC Systems Biology.

[51]  Stephanie E. Vallee,et al.  Haploinsufficiency of SOX5 at 12p12.1 is associated with developmental delays with prominent language delay, behavior problems, and mild dysmorphic features , 2012, Human mutation.

[52]  Peter Langfelder,et al.  Fast R Functions for Robust Correlations and Hierarchical Clustering. , 2012, Journal of statistical software.

[53]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[54]  Nicholas J. Schork,et al.  Age-Dependent Brain Gene Expression and Copy Number Anomalies in Autism Suggest Distinct Pathological Processes at Young Versus Mature Ages , 2012, PLoS genetics.

[55]  Ji Wan,et al.  Genome-Wide Determination of a Broad ESRP-Regulated Posttranscriptional Network by High-Throughput Sequencing , 2012, Molecular and Cellular Biology.

[56]  K. Hansen,et al.  Removing technical variability in RNA-seq data using conditional quantile normalization , 2012, Biostatistics.

[57]  Juw Won Park,et al.  MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data , 2012, Nucleic acids research.

[58]  J. LaSalle,et al.  Increased copy number for methylated maternal 15q duplications leads to changes in gene and protein expression in human cortical samples , 2011, Molecular autism.

[59]  L. Feuk,et al.  Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain , 2011, Nature Structural &Molecular Biology.

[60]  Heng Li,et al.  A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data , 2011, Bioinform..

[61]  J. Leek,et al.  Temporal dynamics and genetic control of transcription in the human prefrontal cortex , 2011, Nature.

[62]  J. Kleinman,et al.  Spatiotemporal transcriptome of the human brain , 2011, Nature.

[63]  M. Long,et al.  Accelerated Recruitment of New Brain Development Genes into the Human Genome , 2011, PLoS biology.

[64]  S. Horvath,et al.  Transcriptomic Analysis of Autistic Brain Reveals Convergent Molecular Pathology , 2011, Nature.

[65]  Rui Luo,et al.  Is My Network Module Preserved and Reproducible? , 2011, PLoS Comput. Biol..

[66]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[67]  G Halliday,et al.  pH measurement as quality control on human post mortem brain tissue: a study of the BrainNet Europe consortium , 2009, Neuropathology and applied neurobiology.

[68]  S. Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[69]  V. Lefebvre,et al.  SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons , 2008, Proceedings of the National Academy of Sciences.

[70]  Károly Mirnics,et al.  Immune transcriptome alterations in the temporal cortex of subjects with autism , 2008, Neurobiology of Disease.

[71]  Bin Zhang,et al.  Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R , 2008, Bioinform..

[72]  Peter Langfelder,et al.  Eigengene networks for studying the relationships between co-expression modules , 2007, BMC Systems Biology.

[73]  J. Harrow,et al.  GENCODE: producing a reference annotation for ENCODE , 2006, Genome Biology.

[74]  E. Birney,et al.  EGASP: the human ENCODE Genome Annotation Assessment Project , 2006, Genome Biology.

[75]  S. Horvath,et al.  Statistical Applications in Genetics and Molecular Biology , 2011 .

[76]  Z. Weng,et al.  Detection of functional DNA motifs via statistical over-representation. , 2004, Nucleic acids research.

[77]  William C Hahn,et al.  Lentivirus-delivered stable gene silencing by RNAi in primary cells. , 2003, RNA.

[78]  J. Pevsner,et al.  Postmortem brain abnormalities of the glutamate neurotransmitter system in autism , 2001, Neurology.

[79]  A. Couteur,et al.  Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders , 1994, Journal of autism and developmental disorders.

[80]  P. Huttenlocher Morphometric study of human cerebral cortex development , 1990, Neuropsychologia.

[81]  Thomas Ragg,et al.  The RIN: an RNA integrity number for assigning integrity values to RNA measurements , 2006, BMC Molecular Biology.

[82]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[83]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[84]  John D. Storey,et al.  Supplementary Text: Capturing Heterogeneity in Gene Expression Studies Nested Ks-tests: a Procedure to Test Whether a Procedure Is Valid , 2022 .

[85]  Chris T. A. Evelo,et al.  Bioinformatics Applications Note Databases and Ontologies Go-elite: a Flexible Solution for Pathway and Ontology Over-representation , 2022 .

[86]  Steve Horvath,et al.  Molecular Systems Biology 5; Article number 291; doi:10.1038/msb.2009.46 Citation: Molecular Systems Biology 5:291 , 2022 .