Relative Perturbation Theory for Matrix Spectral Decompositions
暂无分享,去创建一个
[1] Ilse C. F. Ipsen,et al. Relative perturbation results for eigenvalues and eigenvectors of diagonalisable matrices , 1998 .
[2] Ji-guang Sun. Eigenvalues of Rayleigh quotient matrices , 1991 .
[3] Froilán M. Dopico,et al. Weyl-type relative perturbation bounds for eigensystems of Hermitian matrices , 2000 .
[4] J. Barlow,et al. Computing accurate eigensystems of scaled diagonally dominant matrices: LAPACK working note No. 7 , 1988 .
[5] Ilse C. F. Ipsen,et al. Three Absolute Perturbation Bounds for Matrix Eigenvalues Imply Relative Bounds , 1998, SIAM J. Matrix Anal. Appl..
[6] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[7] W. Gragg,et al. On computing accurate singular values and eigenvalues of acyclic matrices , 1992 .
[8] Ren-Cang Li,et al. Relative Perturbation Theory: II. Eigenspace and Singular Subspace Variations , 1996, SIAM J. Matrix Anal. Appl..
[9] Chandler Davis. The rotation of eigenvectors by a perturbation , 1963 .
[10] K. Veselié. A Jacobi eigenreduction algorithm for definite matrix pairs , 1993 .
[11] Shmuel Friedland,et al. Singular values, doubly stochastic matrices, and applications , 1995 .
[12] Ren-Cang Li. Relative Perturbation Theory: I. Eigenvalue and Singular Value Variations , 1998, SIAM J. Matrix Anal. Appl..
[13] W. Kahan,et al. The Rotation of Eigenvectors by a Perturbation. III , 1970 .
[14] Ilse C. F. Ipsen. An overview of relative sin T theorems for invariant subspaces of complex matrices , 2000 .
[15] Z. Drmač,et al. Relative Residual Bounds For The Eigenvalues of a Hermitian Semidefinite Matrix , 1997 .
[16] Conditioning in the Application of-orthogonal Transformations , 1996 .
[17] Jesse L. Barlow,et al. Optimal perturbation bounds for the Hermitian eigenvalue problem , 2000 .
[18] M. F.,et al. Bibliography , 1985, Experimental Gerontology.
[19] P. Wedin. On angles between subspaces of a finite dimensional inner product space , 1983 .
[20] K. Veseli,et al. Perturbation Theory for the Eigenvalues of Factorised Symmetric Matrices , 1999 .
[21] I. Dhillon. Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem , 1998 .
[22] K. Veselic. On a new class of elementary matrices , 1979 .
[23] Roy Mathias,et al. Quadratic Residual Bounds for the Hermitian Eigenvalue Problem , 1998 .
[24] Leiba Rodman,et al. Errata for: Polar decomposition in finite dimensional indefinite scalar product spaces: Special cases and applications , 1997 .
[25] Ivan Slapničar,et al. Perturbations of the eigenprojections of a factorized Hermitian matrix , 1995 .
[26] Z. Drmač. Accurate Computation of the Product-Induced Singular Value Decomposition with Applications , 1998 .
[27] G. Stewart. Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .
[28] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[29] Roy Mathias,et al. A relative perturbation bound for positive definite matrices , 1998 .
[30] Ilse C. F. Ipsen. Absolute and relative perturbation bounds for invariant subspaces of matrices , 2000 .
[31] Ivan Slapničar,et al. Floating-point perturbations of Hermitian matrices , 1993 .
[32] C. Loan. Generalizing the Singular Value Decomposition , 1976 .
[33] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[34] Ji-guang Sun. The perturbation bounds for eigenspaces of a definite matrix-pair , 1983 .
[35] J. Demmel,et al. Computing the Singular Value Decomposition with High Relative Accuracy , 1997 .
[36] Ji-guang Sun,et al. Perturbation analysis for the generalized eigenvalue and the generalized singular value problem , 1983 .
[37] H. Zha. A note on the existence of the hyperbolic singular value decomposition , 1996 .
[38] James Demmel,et al. Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..
[39] Tosio Kato. Perturbation theory for linear operators , 1966 .
[40] A. Bojanczyk,et al. The hyperbolic singular value decomposition and applications , 1989, Proceedings of the 32nd Midwest Symposium on Circuits and Systems,.
[41] Zlatko Drmač. On relative residual bounds for the eigenvalues of a Hermitian matrix , 1996 .
[42] A. Sluis. Condition numbers and equilibration of matrices , 1969 .
[43] Ivan Slapničar,et al. Componentwise Analysis of Direct Factorization of Real Symmetric and Hermitian Matrices , 1998 .
[44] R. Mathias. Spectral Perturbation Bounds for Positive Definite Matrices , 1997 .
[45] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[46] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[47] M. Saunders,et al. Towards a Generalized Singular Value Decomposition , 1981 .
[48] Ivan Slapničar,et al. Accurate Symmetric Eigenreduction by a Jacobi Method , 1993 .
[49] Allan O. Steinhardt,et al. The hyberbolic singular value decomposition and applications , 1990, Fifth ASSP Workshop on Spectrum Estimation and Modeling.
[50] Ilse C. F. Ipsen,et al. Relative perturbation techniques for singular value problems , 1995 .
[51] Ilse C. F. Ipsen. Relative perturbation results for matrix eigenvalues and singular values , 1998, Acta Numerica.
[52] Ivan Slapničar,et al. Relative perturbation bound for invariant subspaces of graded indefinite Hermitian matrices , 1999 .