In the field of robotics, extremely accurate gearboxes are mandatory in order to ensure the adequate precision required by the automatic processes. For these applications, planetary gearboxes represent one of the most attractive solutions because they ensure high reduction ratios in a compact solution.However, their compactness and high power density, imply some thermal limitations.In order to overcome this problem, new gear designs have been studied by a hybrid analytical-numerical approach in order to reduce the power dissipation and, consequently, the operating temperatures.The efficiency increase is obtained mainly by a reduction of the module of the gears. This, together with other modifications of the tooth form (pressure angle, profile shift, etc.), allows to reduce the relative sliding between the tooth flanks that causes the power loss maintaining at the same time an adequate load carrying capacity.Low-loss gears have already been studied by other authors on bigger gears. Furthermore, by means of dedicated CFD simulations performed with an especially developed tool based on the open-source code OpenFOAM®, it has been shown that the sliding optimized design has a positive impact also on the churning power losses. The global winning in terms of reduction of the gear meshing power losses can be assessed in about 50%, depending on the reduction ratio.The new design has been validated by means of experimental tests performed in the internal laboratory of the company. The results have fully validated both the numerical approach and the new design.ZusammenfassungIm Bereich der Robotik sind extrem genaue Getriebe zwingend erforderlich. Für diese Anwendungen stellen Planetengetriebe eine der attraktivsten Lösungen dar, da sie in einer kompakten Lösung hohe Reduktionsverhältnisse gewährleisten.Allerdings implizieren ihre Kompaktheit und hohe Leistungsdichte einige thermische Einschränkungen.Um dieses Problem zu lösen, wurden neue Getriebekonstruktionen durch einen hybriden analytisch-numerischen Ansatz untersucht, um die Verlustleistung und damit die Betriebstemperaturen zu reduzieren.Die Effizienzsteigerung wird vor allem durch eine Änderung der Zahnradmodul erreicht. Dies ermöglicht eine Reduzierung des Relativgleitens zwischen den Zahnflanken, wobei durch die Modifikationen der Zahnform (d.h. Druckwinkel, Profilverschiebung usw). ausreichende Tragfähigkeit aufrechterhalten wird.Low-Loss-Getriebe wurden bereits von anderen Autoren auf größeren Zahnrädern untersucht. In dieser Arbeit wurden besonders kleine ($$m_{n}=0.55\text{mm}$$mn=0.55mm) Zahnräder untersucht. Darüber hinaus wurde durch CFD-Simulationen gezeigt, die mit einem speziell entwickelten Tool auf Basis des Open-Source-Code OpenFOAM® durchgeführt wurden, dass sich das gleitoptimierte Design auch auf die lastunabhängigen Leistungsverluste positiv auswirkt. Der globale Gewinn in Bezug auf die Verringerung der Eingriffsverluste kann in etwa 50 %, abhängig vom Reduktionsverhältnis, beurteilt werden.Das neue Design wurde durch Versuche validiert. Die Ergebnisse haben sowohl den numerischen Ansatz als auch den neuen Entwurf vollständig belegt.
[1]
Franco Concli,et al.
Thermal and efficiency characterization of a low-backlash planetary gearbox: An integrated numerical-analytical prediction model and its experimental validation
,
2016
.
[2]
Augusto Della Torre,et al.
Churning power losses of ordinary gears: a new approach based on the internal fluid dynamics simulations
,
2015
.
[3]
Carlo Gorla,et al.
Oil Squeezing Power Losses In Gears:A CFD Analysis
,
2012
.
[4]
Carlo Gorla,et al.
A New Integrated Approach for the Prediction of the Load Independent Power Losses of Gears: Development of a Mesh-Handling Algorithm to Reduce the CFD Simulation Time
,
2016
.
[5]
Carlo Gorla,et al.
Analysis of power losses in an industrial planetary speed reducer: Measurements and computational fluid dynamics calculations
,
2014
.
[6]
Weeratunge Malalasekera,et al.
An introduction to computational fluid dynamics - the finite volume method
,
2007
.
[7]
Carlo Gorla,et al.
Numerical modeling of the churning power losses in planetary gearboxes: An innovative partitioning‐based meshing methodology for the application of a computational effort reduction strategy to complex gearbox configurations
,
2017
.
[8]
Avinash Singh,et al.
An Experimental Investigation of the Efficiency of Planetary Gear Sets
,
2012
.
[9]
J.-P. Stemplinger,et al.
Load independent power losses of ordinary gears: Numerical and experimental analysis
,
2013
.
[10]
Ramiro C. Martins,et al.
Low-loss austempered ductile iron gears: Experimental evaluation comparing materials and lubricants
,
2012
.
[11]
Karsten Stahl,et al.
Increased Tooth Bending Strength and Pitting Load Capacity of Fine Module Gears
,
2015
.
[12]
Fabrice Ville,et al.
A Note on Flow Regimes and Churning Loss Modelling
,
2011
.
[13]
Robert F. Handschuh,et al.
CFD Analysis of Gear Windage Losses: Validation and Parametric Aerodynamic Studies
,
2011
.
[14]
Carlo Gorla,et al.
Computational And Experimental AnalysisOf The Churning Power Losses In An IndustrialPlanetary Speed Reducer
,
2012
.
[15]
Hans Winter,et al.
Getriebe allgemein, zahnradgetriebe - grundlagen stirnradgetriebe
,
1983
.
[16]
Fabrice Ville,et al.
Investigations on CFD Simulations for Predicting Windage Power Losses in Spur Gears
,
2009
.
[17]
Hua Liu,et al.
Determination of oil distribution and churning power loss of gearboxes by finite volume CFD method
,
2017
.
[18]
Valery Chernoray,et al.
Experimental study of multiphase flow in a model gearbox
,
2011
.
[19]
Carlo Gorla,et al.
Analysis of the Oil Squeezing Power Losses of a Spur Gear Pair by Mean of CFD Simulations
,
2012
.