Graph Construction for Hyperspectral Data Unmixing

This chapter presents graph construction for hyperspectral data and associated unmixing methods based on graph regularization. Graph is a ubiquitous mathematical tool for modeling relations between objects under study. In the context of hyperspectral image analysis, constructing graphs can be useful to relate pixels in order to perform corporative analysis instead of analyzing each pixel individually. In this chapter, we review fundamental elements of graphs and present different ways to construct graphs in both spatial and spectral senses for hyperspectral images. By incorporating a graph regularization, we then formulate a general hyperspectral unmixing problem that can be important for applications such as remote sensing and environment monitoring. Alternating direction method of multipliers (ADMM) is also presented as a generic tool for solving the formulated unmixing problems. Experiments validate the proposed scheme with both synthetic data and real remote sensing data.

[1]  Trac D. Tran,et al.  Abundance Estimation for Bilinear Mixture Models via Joint Sparse and Low-Rank Representation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Cédric Richard,et al.  Hyperspectral data unmixing with graph-based regularization , 2015, 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[3]  Cédric Richard,et al.  A graph Laplacian regularization for hyperspectral data unmixing , 2014, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[4]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  R. Singer,et al.  Mars - Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance , 1979 .

[6]  Chein-I Chang,et al.  A New Growing Method for Simplex-Based Endmember Extraction Algorithm , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Antonio J. Plaza,et al.  Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[8]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[9]  Thomas L. Ainsworth,et al.  Exploiting manifold geometry in hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[10]  José M. Bioucas-Dias,et al.  Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing , 2010, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[11]  David W. Messinger,et al.  Spectral-Density-Based Graph Construction Techniques for Hyperspectral Image Analysis , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Jeffrey H. Bowles,et al.  Hyperspectral image segmentation using spatial-spectral graphs , 2012, Defense + Commercial Sensing.

[13]  Alfred O. Hero,et al.  Nonlinear Unmixing of Hyperspectral Images: Models and Algorithms , 2013, IEEE Signal Processing Magazine.

[14]  Antonio Ortega,et al.  Applications of Graph Theory , 2018, Proc. IEEE.

[15]  Gustavo Camps-Valls,et al.  Semi-Supervised Graph-Based Hyperspectral Image Classification , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[17]  Jean-Yves Tourneret,et al.  Nonlinear unmixing of hyperspectral images using a generalized bilinear model , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[18]  Alfonso Fernández-Manso,et al.  Spectral unmixing , 2012 .

[19]  Jie Chen,et al.  Nonlinear Unmixing of Hyperspectral Data Based on a Linear-Mixture/Nonlinear-Fluctuation Model , 2013, IEEE Transactions on Signal Processing.

[20]  Guillermo Sapiro,et al.  Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[21]  David W. Messinger,et al.  Anomaly detection using topology , 2007, SPIE Defense + Commercial Sensing.

[22]  Yannick Deville,et al.  Linear–Quadratic Mixing Model for Reflectances in Urban Environments , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Chein-I Chang,et al.  Semi-Supervised Linear Spectral Unmixing Using a Hierarchical Bayesian Model for Hyperspectral Imagery , 2008, IEEE Transactions on Signal Processing.

[24]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[25]  Chein-I Chang,et al.  Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[26]  Jean-Yves Tourneret,et al.  Nonlinearity Detection in Hyperspectral Images Using a Polynomial Post-Nonlinear Mixing Model , 2013, IEEE Transactions on Image Processing.