Extended guidelines for mtDNA typing of population data in forensic science.

Mitochondrial DNA analysis has become a vital niche in forensic science as it constitutes a powerful technique for low quality and low quantity DNA samples. For the forensic field it is important to employ standardized procedures based on scientific grounds, in order to have mtDNA evidence be accepted in court. Here, we modify and extend recommendations that were spelled out previously in the absence of solid knowledge about the worldwide phylogeny. Refinement of those earlier guidelines became necessary in regard to sample selection, amplification and sequencing strategies, as well as a posteriori quality control of mtDNA profiles. The notation of sequence data should thus reflect this growing knowledge.

[1]  T. Vaněček,et al.  Mitochondrial DNA D-loop hypervariable regions: Czech population data , 2004, International Journal of Legal Medicine.

[2]  R. Villems,et al.  Lab-Specific Mutation Processes , 2006 .

[3]  S. Kashimura,et al.  Multiplex amplified product‐length polymorphism analysis of 36 mitochondrial single‐nucleotide polymorphisms for haplogrouping of East Asian populations , 2005, Electrophoresis.

[4]  Jung Bin Lee,et al.  Haplotype diversity in mitochondrial DNA hypervariable region I, II and III in northeast China Han. , 2005, Forensic science international.

[5]  H. Bandelt,et al.  Detecting errors in mtDNA data by phylogenetic analysis , 2001, International Journal of Legal Medicine.

[6]  Loucinda Carey,et al.  Trends in DNA forensic analysis , 2002, Electrophoresis.

[7]  M. Lehtonen,et al.  Phylogenetic network for European mtDNA. , 2001, American journal of human genetics.

[8]  G. Chaubey,et al.  Reconstructing the Origin of Andaman Islanders , 2005, Science.

[9]  S. Pollak,et al.  A third hypervariable region in the human mitochondrial D-loop. , 1997, Human genetics.

[10]  R. Villems,et al.  Ethiopian mitochondrial DNA heritage: tracking gene flow across and around the gate of tears. , 2004, American journal of human genetics.

[11]  U. Lass,et al.  Variability of the mitochondrial loci nt00073 and nt16519 in populations of Germany, Syria, Cameroon, Japan, Vietnam and Peru—a study using the RFLP and Light Cycler™ technique , 2003 .

[12]  D. Turnbull,et al.  Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African, Asian, and European haplogroups. , 2002, American journal of human genetics.

[13]  Hidetoshi Shimodaira,et al.  Mitochondrial genome variation in eastern Asia and the peopling of Japan. , 2004, Genome research.

[14]  R. Villems,et al.  Identification of Native American Founder mtDNAs Through the Analysis of Complete mtDNA Sequences: Some Caveats , 2003, Annals of human genetics.

[15]  Hans-Jürgen Bandelt,et al.  Phylogeny of east Asian mitochondrial DNA lineages inferred from complete sequences. , 2003, American journal of human genetics.

[16]  B Brinkmann,et al.  DNA commission of the International Society of Forensic Genetics: recommendations on forensic analysis using Y-chromosome STRs. , 2001, International journal of legal medicine.

[17]  T. Parsons,et al.  Rapid screening of mtDNA coding region SNPs for the identification of west European Caucasian haplogroups , 2003, International Journal of Legal Medicine.

[18]  Hans-Jürgen Bandelt,et al.  Phylogeny of mitochondrial DNA macrohaplogroup N in India, based on complete sequencing: implications for the peopling of South Asia. , 2004, American journal of human genetics.

[19]  P. Rudan,et al.  Origin and diffusion of mtDNA haplogroup X. , 2003, American journal of human genetics.

[20]  J. Craig Venter,et al.  FDA Races in Wrong Direction , 2003, Science.

[21]  T. Parsons,et al.  A multiplex allele-specific primer extension assay for forensically informative SNPs distributed throughout the mitochondrial genome , 2004, International Journal of Legal Medicine.

[22]  B Brinkmann,et al.  Considerations by the European DNA profiling (EDNAP) group on the working practices, nomenclature and interpretation of mitochondrial DNA profiles. , 2001, Forensic science international.

[23]  A. Pérez-Lezaun,et al.  Mitochondrial DNA error prophylaxis: assessing the causes of errors in the GEP'02-03 proficiency testing trial. , 2005, Forensic science international.

[24]  Jonathan Scott Friedlaender,et al.  Expanding Southwest Pacific mitochondrial haplogroups P and Q. , 2005, Molecular biology and evolution.

[25]  R. Szibor,et al.  Correct mitochondrial L-strand sequencing after C-stretches , 1999, International Journal of Legal Medicine.

[26]  Á. Carracedo,et al.  Typing of mitochondrial DNA coding region SNPs of forensic and anthropological interest using SNaPshot minisequencing. , 2004, Forensic science international.

[27]  Suni M. Edson,et al.  Naming the Dead - Confronting the Realities of Rapid Identification of Degraded Skeletal Remains. , 2004, Forensic science review.

[28]  H. Bandelt,et al.  Human Mitochondrial DNA and the Evolution of Homo sapiens , 2006 .

[29]  T. Parsons,et al.  Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians , 2004, International Journal of Legal Medicine.

[30]  I. Evett,et al.  Interpreting DNA Evidence: Statistical Genetics for Forensic Scientists , 1998 .

[31]  S. Lutz-Bonengel,et al.  Sequence polymorphisms within the human mitochondrial genes MTATP6, MTATP8 and MTND4 , 2003, International Journal of Legal Medicine.

[32]  T. Parsons,et al.  Mitochondrial DNA control region sequences from Nairobi (Kenya): inferring phylogenetic parameters for the establishment of a forensic database , 2004, International Journal of Legal Medicine.

[33]  Alfredo Coppa,et al.  The Role of Selection in the Evolution of Human Mitochondrial Genomes , 2006, Genetics.

[34]  M. Coble The Identification of Single Nucleotide Polymorphisms in the Entire Mitochondrial Genome to Increase the Forensic Discrimination of Common HV1/HV2 Types in the Caucasian Population , 2004 .

[35]  Q. Kong,et al.  Estimation of Mutation Rates and Coalescence Times: Some Caveats , 2006 .

[36]  C. Tzen,et al.  Polymorphism and heteroplasmy of mitochondrial DNA in the D-loop region in Taiwanese. , 2002, Journal of the Formosan Medical Association = Taiwan yi zhi.

[37]  H. Bandelt,et al.  Median networks: speedy construction and greedy reduction, one simulation, and two case studies from human mtDNA. , 2000, Molecular phylogenetics and evolution.

[38]  C. Tzen,et al.  Sequence polymorphism in the coding region of mitochondrial genome encompassing position 8389-8865. , 2001, Forensic science international.

[39]  Hans-Jürgen Bandelt,et al.  Phantom mutation hotspots in human mitochondrial DNA , 2005, Electrophoresis.

[40]  W. Parson,et al.  Fehlerquellen mitochondrialer DNS-Datensätze und Evaluation der mtDNS-Datenbank „D-Loop-BASE“ , 2004, Rechtsmedizin.

[41]  H. Pfitzinger,et al.  Reproducibility of mtDNA analysis between laboratories: a report of the European DNA Profiling Group (EDNAP). , 1998, Forensic science international.

[42]  M. Falconi,et al.  Different informativeness of the three hypervariable mitochondrial DNA regions in the population of Bologna (Italy). , 2003, Forensic science international.

[43]  D. Gurwitz,et al.  The matrilineal ancestry of Ashkenazi Jewry: portrait of a recent founder event. , 2006, American journal of human genetics.

[44]  B Brinkmann,et al.  DNA commission of the international society for forensic genetics: guidelines for mitochondrial DNA typing. , 2000, Forensic science international.

[45]  N. Saitou,et al.  Multiplex amplified product‐length polymorphism analysis for rapid detection of human mitochondrial DNA variations , 2001, Electrophoresis.

[46]  Q. Kong,et al.  The dazzling array of basal branches in the mtDNA macrohaplogroup M from India as inferred from complete genomes. , 2006, Molecular biology and evolution.

[47]  W. Parson,et al.  Consistent treatment of length variants in the human mtDNA control region: a reappraisal , 2006, International Journal of Legal Medicine.

[48]  A. Carracedo,et al.  DNA commission of the international society for forensic genetics: guidelines for mitochondrial DNA typing. , 2000, Forensic science international.

[49]  W Parson,et al.  Results of a collaborative study of the EDNAP group regarding mitochondrial DNA heteroplasmy and segregation in hair shafts. , 2004, Forensic science international.

[50]  D. Turnbull,et al.  African Haplogroup L mtDNA sequences show violations of clock-like evolution. , 2004, Molecular biology and evolution.

[51]  H. Bandelt,et al.  Saami and Berbers--an unexpected mitochondrial DNA link. , 2005, American journal of human genetics.

[52]  A. Amorim,et al.  Predicting sampling saturation of mtDNA haplotypes: an application to an enlarged Portuguese database , 2004, International Journal of Legal Medicine.

[53]  I. Yuasa,et al.  Recent progress in mitochondrial DNA analysis. , 2005, Legal medicine.

[54]  H. Bandelt,et al.  The fingerprint of phantom mutations in mitochondrial DNA data. , 2002, American journal of human genetics.

[55]  Bruce Budowle,et al.  Recommendations for consistent treatment of length variants in the human mitochondrial DNA control region. , 2002, Forensic science international.

[56]  A. Salas,et al.  Artificial recombination in forensic mtDNA population databases , 2004, International Journal of Legal Medicine.

[57]  M. Holland,et al.  Population data for 101 Austrian Caucasian mitochondrial DNA d-loop sequences: Application of mtDNA sequence analysis to a forensic case , 1998, International Journal of Legal Medicine.

[58]  Mark R. Wilson,et al.  Further Discussion of the Consistent Treatment of Length Variants in the Human Mitochondrial DNA Control Region , 2002 .

[59]  T. Kivisild,et al.  Traces of Archaic Mitochondrial Lineages Persist in Austronesian-Speaking Formosan Populations , 2005, PLoS biology.

[60]  D. Behar,et al.  Evaluating the forensic informativeness of mtDNA haplogroup H sub-typing on a Eurasian scale. , 2006, Forensic science international.

[61]  Gillian Tully,et al.  The EDNAP mitochondrial DNA population database (EMPOP) collaborative exercises: organisation, results and perspectives. , 2004, Forensic science international.

[62]  W. Parson,et al.  Is it possible to differentiate mtDNA by means of HVIII in samples that cannot be distinguished by sequencing the HVI and HVII regions? , 2000, Forensic science international.