Geometric ergodicity of the Bayesian lasso

Consider the standard linear model y = X +✏ , where the components of ✏ are iid standard normal errors. Park and Casella [14] consider a Bayesian treatment of this model with a Laplace/Inverse-Gamma prior on (,). They introduce a Data Augmentation approach that can be used to explore the resulting intractable posterior density, and call it the Bayesian lasso algorithm. In this paper, the Markov chain underlying the Bayesian lasso algorithm is shown to be geometrically ergodic, for arbitrary values of the sample size n and the number of variables p. This is important, as geometric ergodicity provides theoretical justification for the use of Markov chain CLT, which can then be used to obtain asymptotic standard errors for Markov chain based estimates of posterior quantities. Kyung et al [12] provide a proof of geometric ergodicity for the restricted case n p, but as we explain in this paper, their proof is incorrect. Our approach is different and more direct, and enables us to establish geometric ergodicity for arbitrary n and p.

[1]  Bani K. Mallick,et al.  Gene selection using a two-level hierarchical Bayesian model , 2004, Bioinform..

[2]  J. Griffin,et al.  Inference with normal-gamma prior distributions in regression problems , 2010 .

[3]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[4]  A Few Remarks on “Fixed-Width Output Analysis for Markov Chain Monte Carlo” by Jones et al , 2007 .

[5]  Galin L. Jones,et al.  Fixed-Width Output Analysis for Markov Chain Monte Carlo , 2006, math/0601446.

[6]  M. Yuan,et al.  Efficient Empirical Bayes Variable Selection and Estimation in Linear Models , 2005 .

[7]  James M. Flegal,et al.  Batch means and spectral variance estimators in Markov chain Monte Carlo , 2008, 0811.1729.

[8]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[9]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[10]  Michael I. Jordan,et al.  Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..

[11]  Mário A. T. Figueiredo Adaptive Sparseness for Supervised Learning , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Peter W. Glynn,et al.  A new proof of convergence of MCMC via the ergodic theorem , 2011 .

[13]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[14]  James G. Scott,et al.  Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .

[15]  G. Casella,et al.  Penalized regression, standard errors, and Bayesian lassos , 2010 .

[16]  Murali Haran,et al.  Markov chain Monte Carlo: Can we trust the third significant figure? , 2007, math/0703746.

[17]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[18]  James G. Scott,et al.  Handling Sparsity via the Horseshoe , 2009, AISTATS.

[19]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[20]  Gareth O. Roberts,et al.  Markov‐chain monte carlo: Some practical implications of theoretical results , 1998 .