Intractable Problems in Number Theory

This paper surveys computational problems related to integer factorization and the calculation of discrete logarithms in various groups. Its aim is to provide theory sufficient for the derivation of heuristic running time estimates, and at the same time introduce algorithms of practical value.

[1]  Claus-Peter Schnorr,et al.  An efficient solution of the congruence x2+ky2=mpmod{n} , 1987, IEEE Trans. Inf. Theory.

[2]  L. Adleman,et al.  On distinguishing prime numbers from composite numbers , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[3]  N. Koblitz Elliptic curve cryptosystems , 1987 .

[4]  Don Coppersmith,et al.  Fast evaluation of logarithms in fields of characteristic two , 1984, IEEE Trans. Inf. Theory.

[5]  J. L. Selfridge,et al.  Factorizations of b[n]±1, b=2, 3, 5, 6, 7, 10, 11, 12 up to high powers , 1985 .

[6]  Yvo Desmedt,et al.  A Chosen Text Attack on the RSA Cryptosystem and Some Discrete Logarithm Schemes , 1986, CRYPTO.

[7]  C. Schnorr,et al.  A Monte Carlo factoring algorithm with linear storage , 1984 .

[8]  M. Rabin DIGITALIZED SIGNATURES AND PUBLIC-KEY FUNCTIONS AS INTRACTABLE AS FACTORIZATION , 1979 .

[9]  Hugh C. Williams,et al.  An M³ Public-Key Encryption Scheme , 1985, CRYPTO.

[10]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[11]  Marvin C. Wunderlich,et al.  Implementing the continued fraction factoring algorithm on parallel machines , 1985 .

[12]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[13]  C. Pomerance Fast, Rigorous Factorization and Discrete Logarithm Algorithms , 1987 .

[14]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[15]  Eric Bach,et al.  How to Generate Factored Random Numbers , 1988, SIAM J. Comput..

[16]  Michael J. Fischer,et al.  A robust and verifiable cryptographically secure election scheme , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[17]  Jeffrey Shallit,et al.  Factoring with cyclotomic polynomials , 1989 .

[18]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[19]  Jeffrey Shallit,et al.  Number-Theoretic Functions Which Are Equivalent to Number of Divisors , 1985, Inf. Process. Lett..

[20]  Taher ElGamal On Computing Logarithms Over Finite Fields , 1985 .

[21]  Heather Woll,et al.  Reductions among Number Theoretic Problems , 1987, Inf. Comput..

[22]  de Ng Dick Bruijn The asymptotic behaviour of a function occuring in the theory of primes , 1951 .

[23]  Gary L. Miller Riemann's Hypothesis and Tests for Primality , 1976, J. Comput. Syst. Sci..

[24]  J. Brillhart,et al.  A method of factoring and the factorization of , 1975 .

[25]  George E. Collins,et al.  The Jacobi symbol algorithm , 1982, SIGS.

[26]  J. Pollard,et al.  Monte Carlo methods for index computation () , 1978 .

[27]  Robert McDonnell,et al.  An application of higher reciprocity to computational number theory , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[28]  R. Schoof Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .

[29]  Victor S. Miller,et al.  Use of Elliptic Curves in Cryptography , 1985, CRYPTO.

[30]  Susan Landau Some Remarks on Computing the Square Parts of Integers , 1988, Inf. Comput..

[31]  H. C. Williams,et al.  A $p+1$ method of factoring , 1982 .

[32]  P. Erdös,et al.  On a problem of Oppenheim concerning “factorisatio numerorum” , 1983 .

[33]  Neal Koblitz,et al.  A Family of Jacobians Suitable for Discrete Log Cryptosystems , 1988, CRYPTO.

[34]  Martin E. Hellman,et al.  An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[35]  F. Morain Implementation of the Atkin-Goldwasser-Kilian primality testing algorithm , 1988 .

[36]  D. G. Hazelwood On ideals having only small prime factors , 1977 .

[37]  E. Wattel,et al.  On the numerical solution of a differential-difference equation arising in analytic number theory , 1969 .

[38]  Carl Pomerance,et al.  The Quadratic Sieve Factoring Algorithm , 1985, EUROCRYPT.

[39]  E. Bach Discrete Logarithms and Factoring , 1984 .

[40]  J. M. Pollard,et al.  Theorems on factorization and primality testing , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.

[41]  M. Rabin Probabilistic algorithm for testing primality , 1980 .

[42]  Robert D. Silverman The multiple polynomial quadratic sieve , 1987 .

[43]  Bert den Boer Diffie-Hellman is as Strong as Discrete Log for Certain Primes , 1988, CRYPTO.

[44]  Arjen K. Lenstra,et al.  Fast and rigorous factorization under the generalized Riemann hypothesis , 1987 .

[45]  E. Berlekamp Factoring polynomials over finite fields , 1967 .

[46]  L. Adleman,et al.  Solving bivariate quadratic congruences in random polynomial time , 1987 .

[47]  Leonard M. Adleman,et al.  A subexponential algorithm for the discrete logarithm problem with applications to cryptography , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[48]  Leonard M. Adleman,et al.  Open Problems in Number Theoretic Complexity , 1987 .

[49]  Henri Cohen,et al.  Heuristics on class groups of number fields , 1984 .

[50]  P. L. Montgomery Speeding the Pollard and elliptic curve methods of factorization , 1987 .