Low-power CMOS wireless MEMS motion sensor for physiological activity monitoring

In this paper, a short distance wireless sensor node "AccuMicroMotion" for physiological activity monitoring is proposed for detecting motions in six degrees of freedom. System architecture, relevant microstructures, and electronic circuits to implement the sensor node are presented. A three-axis microelectromechanical systems (MEMS) accelerometer and a z-axis gyroscope are designed and fabricated using a new deep-reactive ion-etch CMOS-MEMS process. The interface circuits, an analog-to-digital converter, and a wireless transmitter are designed using Taiwan Semiconductor Manufacturing Company 0.35-/spl mu/m CMOS process, wherein the interface circuits adopt chopper stabilization technique and can resolve a signal (dc to 1 kHz) as low as 200 nV from the microsensors; digitized outputs from the microsensors are transmitted by a 900-MHz amplitude-shift-keying radio-frequency transmitter that delivers a 2.2-mW power to a 50-/spl Omega/ antenna. The system draws an average current of 4.8 mA from a 3-V supply when six sensors are in operation simultaneously and provides an overall 60-dB dynamic range.

[1]  Rahul Sarpeshkar,et al.  An offset-canceling low-noise lock-in architecture for capacitive sensing , 2003, IEEE J. Solid State Circuits.

[2]  C.S. Vaucher,et al.  A family of low-power truly modular programmable dividers in standard 0.35-/spl mu/m CMOS technology , 2000, IEEE Journal of Solid-State Circuits.

[3]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[4]  Bernhard E. Boser,et al.  A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics , 1999, IEEE J. Solid State Circuits.

[5]  Paolo Dario,et al.  An implantable telemetry platform system for in vivo monitoring of physiological parameters , 2004, IEEE Transactions on Information Technology in Biomedicine.

[6]  W.J. Li,et al.  A wireless motion sensing system using ADXL MEMS accelerometers for sports science applications , 2004, Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788).

[7]  M. Coyle,et al.  Ambulatory cardiopulmonary data capture , 2002, 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.02EX578).

[8]  E. V. van Someren,et al.  Actigraphic monitoring of movement and rest-activity rhythms in aging, Alzheimer's disease and Parkinson's disease , 1996, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[9]  Huikai Xie,et al.  A single-crystal silicon 3-axis CMOS-MEMS accelerometer , 2004, Proceedings of IEEE Sensors, 2004..

[10]  Vasundara V. Varadan,et al.  Design and fabrication of wireless remotely readable MEMS based microaccelerometers , 1997 .

[11]  Kukjin Chun,et al.  A high performance mixed micromachined differential resonant accelerometer , 2002, Proceedings of IEEE Sensors.

[12]  Gary K. Fedder,et al.  A CMOS z-axis capacitive accelerometer with comb-finger sensing , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[13]  Russell C. Eberhart,et al.  Using artificial neural network for sleep/wake discrimination from wrist activity: preliminary results , 1998, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286).

[14]  Shuvo Roy,et al.  Sub-femtofarad capacitive sensing for microfabricated transducers using correlated double sampling and delta modulation , 2000 .

[15]  Gabor C. Temes,et al.  A two-chip interface for a MEMS accelerometer , 2002, IEEE Trans. Instrum. Meas..

[16]  Kristofer S. J. Pister,et al.  An ultralow-energy ADC for Smart Dust , 2003, IEEE J. Solid State Circuits.

[17]  T.H. Lee,et al.  A 12 mW wide dynamic range CMOS front end for a portable GPS receiver , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[18]  M. Esashi,et al.  Electrostatically levitated spherical 3-axis accelerometer , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[19]  A. Hajimiri,et al.  Design issues in CMOS differential LC oscillators , 1999, IEEE J. Solid State Circuits.

[20]  Hidekuni Takao,et al.  A CMOS integrated three-axis accelerometer fabricated with commercial submicrometer CMOS technology and bulk-micromachining , 2001 .

[21]  William G. Scanlon,et al.  Radiowave propagation from a tissue-implanted source at 418 MHz and 916.5 MHz , 2000, IEEE Transactions on Biomedical Engineering.

[22]  Gary K. Fedder,et al.  Design and fabrication of an integrated CMOS-MEMS 3-axis accelerometer , 2003 .

[23]  N. Yazdi,et al.  An interface IC for a capacitive silicon /spl mu/g accelerometer , 1999, 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278).

[24]  Kenzo Watanabe,et al.  A switched-capacitor interface for differential capacitance transducers , 2001, IEEE Trans. Instrum. Meas..

[25]  Yunhui Liu,et al.  MIDS: micro input devices system using MEMS sensors , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  W. Sansen,et al.  A 900-mV low-power ΔΣ A/D converter with 77-dB dynamic range , 1998, IEEE J. Solid State Circuits.

[27]  William O. Keese,et al.  An Analysis and Performance Evaluation of a Passive Filter Design Technique for Charge Pump Phase-Locked Loops , 1996 .

[28]  G.K. Fedder,et al.  A low-noise low-offset capacitive sensing amplifier for a 50-/spl mu/g//spl radic/Hz monolithic CMOS MEMS accelerometer , 2004, IEEE Journal of Solid-State Circuits.

[29]  Soichi Katayama,et al.  Actigraph Analysis of Diurnal Motor Fluctuations during Dopamine Agonist Therapy , 2001, European Neurology.

[30]  Michel Steyaert,et al.  Converter with 77-dB Dynamic Range , 1998 .

[31]  Behzad Razavi,et al.  A low-power 2.4-GHz transmitter/receiver CMOS IC , 2003, IEEE J. Solid State Circuits.

[32]  Junseok Chae,et al.  A monolithic three-axis silicon capacitive accelerometer with micro-g resolution , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[33]  K. Najafi,et al.  A high sensitivity z-axis torsional silicon accelerometer , 1996, International Electron Devices Meeting. Technical Digest.

[34]  Huikai Xie,et al.  High-resolution Integrated Micro-gyroscope for Space Applications , 2004 .