Non-Markovian stochastic processes: colored noise.

We survey classical non-Markovian processes driven by thermal equilibrium or nonequilibrium (nonthermal) colored noise. Examples of colored noise are presented. For processes driven by thermal equilibrium noise, the fluctuation-dissipation relation holds. In consequence, the system has to be described by a generalized (integro-differential) Langevin equation with a restriction on the damping integral kernel: Its form depends on the correlation function of noise. For processes driven by nonequilibrium noise, there is no such a restriction: They are considered to be described by stochastic differential (Ito- or Langevin-type) equations with an independent noise term. For the latter, we review methods of analysis of one-dimensional systems driven by Ornstein-Uhlenbeck noise.

[1]  J. Łuczka An approximate master equation for systems driven by linear Ornstein-Uhlenbeck noise , 1988 .

[2]  West,et al.  Bistability driven by Gaussian colored noise: First-passage times. , 1987, Physical review. A, General physics.

[3]  J. Łuczka Stochastic processes with colored gaussian noise: the small noise limit revisited , 1989 .

[4]  G. W. Ford,et al.  Statistical Mechanics of Assemblies of Coupled Oscillators , 1965 .

[5]  P. Hänggi,et al.  Ratchets driven by harmonic and white noise , 1997 .

[6]  Peter Hänggi,et al.  Generalized langevin equations: A useful tool for the perplexed modeller of nonequilibrium fluctuations? , 1997 .

[7]  Xuerong Mao,et al.  Stochastic differential equations and their applications , 1997 .

[8]  P. Hänggi Noise in nonlinear dynamical systems: Colored noise in continuous dynamical systems: a functional calculus approach , 1989 .

[9]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[10]  Peter Hänggi,et al.  Stochastic processes: Time evolution, symmetries and linear response , 1982 .

[11]  Peter Hänggi,et al.  Correlation functions and masterequations of generalized (non-Markovian) Langevin equations , 1978 .

[12]  Heiner Linke,et al.  Ratches and Brownian motors: Basics, experiments and applications , 2002 .

[13]  M. Magnasco,et al.  Forced thermal ratchets. , 1993, Physical review letters.

[14]  Wio,et al.  Colored noise: A perspective from a path-integral formalism. , 1989, Physical review. A, General physics.

[15]  L. Schimansky-Geier,et al.  Harmonic noise: Effect on bistable systems , 1990 .

[16]  H. Risken Fokker-Planck Equation , 1984 .

[17]  C. Pillet,et al.  Ergodic Properties of the Non-Markovian Langevin Equation , 1997 .

[18]  P. Reimann Brownian motors: noisy transport far from equilibrium , 2000, cond-mat/0010237.

[19]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[20]  B. Berne,et al.  Non‐Markovian activated rate processes: Comparison of current theories with numerical simulation data , 1986 .

[21]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[22]  F. Haake Systematic adiabatic elimination for stochastic processes , 1982 .

[23]  R. Kupferman Fractional Kinetics in Kac–Zwanzig Heat Bath Models , 2004 .

[24]  N. G. van Kampen,et al.  Stochastic differential equations , 1976 .

[25]  Adi R. Bulsara,et al.  Stochastic processes with non-additive fluctuations , 1979 .

[26]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[27]  Wio,et al.  Reentrance Phenomena in Noise Induced Transitions. , 1995, Physical review letters.

[28]  Jung,et al.  Dynamical systems: A unified colored-noise approximation. , 1987, Physical review. A, General physics.

[29]  Melvin Lax,et al.  Classical Noise IV: Langevin Methods , 1966 .

[30]  P. Hänggi,et al.  Theory of activated rate processes for arbitrary frequency dependent friction: Solution of the turnover problem , 1989 .

[31]  O. Barndorff-Nielsen,et al.  Lévy processes : theory and applications , 2001 .

[32]  N. G. van Kampen,et al.  Remarks on non-Markov processes , 1998 .

[33]  P. Jung,et al.  Colored Noise in Dynamical Systems , 2007 .

[34]  Riordan,et al.  Nonequilibrium fluctuation-induced transport. , 1994, Physical review letters.

[35]  Stochastic processes with finite correlation time: modeling and application to the generalized Langevin equation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  F. Marchesoni,et al.  Bistable flow driven by coloured gaussian noise: A critical study , 1984 .

[37]  Peter Hänggi,et al.  Activation rates for nonlinear stochastic flows driven by non-Gaussian noise , 1984 .

[38]  J. Luczka A stochastic process driven by the quadratic Ornstein-Uhlenbeck noise: generator, propagators and all that , 1988 .

[39]  R. Zwanzig Nonlinear generalized Langevin equations , 1973 .

[40]  E. Davies,et al.  Markovian master equations , 1974 .

[41]  Fox,et al.  Uniform convergence to an effective Fokker-Planck equation for weakly colored noise. , 1986, Physical review. A, General physics.

[42]  Wio,et al.  Path-integral formulation for stochastic processes driven by colored noise. , 1989, Physical review. A, General physics.

[43]  J. Doob Stochastic processes , 1953 .

[44]  U. Frisch,et al.  Solving linear stochastic differential equations , 1974 .