Face Recognition and Verification Using Photometric Stereo: The Photoface Database and a Comprehensive Evaluation

This paper presents a new database suitable for both 2-D and 3-D face recognition based on photometric stereo (PS): the Photoface database. The database was collected using a custom-made four-source PS device designed to enable data capture with minimal interaction necessary from the subjects. The device, which automatically detects the presence of a subject using ultrasound, was placed at the entrance to a busy workplace and captured 1839 sessions of face images with natural pose and expression. This meant that the acquired data is more realistic for everyday use than existing databases and is, therefore, an invaluable test bed for state-of-the-art recognition algorithms. The paper also presents experiments of various face recognition and verification algorithms using the albedo, surface normals, and recovered depth maps. Finally, we have conducted experiments in order to demonstrate how different methods in the pipeline of PS (i.e., normal field computation and depth map reconstruction) affect recognition and verification performance. These experiments help to 1) demonstrate the usefulness of PS, and our device in particular, for minimal-interaction face recognition, and 2) highlight the optimal reconstruction and recognition algorithms for use with natural-expression PS data. The database can be downloaded from http://www.uwe.ac.uk/research/Photoface.

[1]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[2]  Patrick J. Flynn,et al.  An evaluation of multimodal 2D+3D face biometrics , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Jiri Matas,et al.  XM2VTSDB: The Extended M2VTS Database , 1999 .

[4]  Rama Chellappa,et al.  What Is the Range of Surface Reconstructions from a Gradient Field? , 2006, ECCV.

[5]  Vinod Chandran,et al.  3D Face Recognition using Log-Gabor Templates , 2006, BMVC.

[6]  A. Yuille,et al.  Two- and Three-Dimensional Patterns of the Face , 2001 .

[7]  Biao Wang,et al.  Illumination Normalization Based on Weber's Law With Application to Face Recognition , 2011, IEEE Signal Processing Letters.

[8]  Takeo Kanade,et al.  Multi-PIE , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[9]  Tieniu Tan,et al.  Robust 3D Face Recognition Using Learned Visual Codebook , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Arman Savran,et al.  Bosphorus Database for 3D Face Analysis , 2008, BIOID.

[11]  Anastasios Tefas,et al.  The discriminant elastic graph matching algorithm applied to frontal face verification , 2007, Pattern Recognit..

[12]  Alan C. Bovik,et al.  Anthropometric 3D Face Recognition , 2010, International Journal of Computer Vision.

[13]  Stefanos Zafeiriou,et al.  The Photoface database , 2011, CVPR 2011 WORKSHOPS.

[14]  Hyeonjoon Moon,et al.  The FERET verification testing protocol for face recognition algorithms , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[15]  Jim Austin,et al.  Three-dimensional face recognition using combinations of surface feature map subspace components , 2008, Image Vis. Comput..

[16]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Meng Joo Er,et al.  Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[18]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[19]  Michael J. Brooks,et al.  Shape and Source from Shading , 1985, IJCAI.

[20]  Arun Ross,et al.  Score normalization in multimodal biometric systems , 2005, Pattern Recognit..

[21]  Ming-Hsuan Yang,et al.  Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using kernel methods , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[22]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[23]  Marc Acheroy,et al.  SIC DB: multi-modal database for person authentication , 1999, Proceedings 10th International Conference on Image Analysis and Processing.

[24]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[25]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[26]  Xudong Jiang,et al.  Eigenfeature Regularization and Extraction in Face Recognition , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Michael G. Strintzis,et al.  3-D Face Recognition With the Geodesic Polar Representation , 2007, IEEE Transactions on Information Forensics and Security.

[28]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[30]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[31]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[32]  Stephen Lin,et al.  Subpixel Photometric Stereo , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Lijun Yin,et al.  A high-resolution 3D dynamic facial expression database , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[34]  Rama Chellappa,et al.  A Method for Enforcing Integrability in Shape from Shading Algorithms , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Rainer Lienhart,et al.  An extended set of Haar-like features for rapid object detection , 2002, Proceedings. International Conference on Image Processing.

[36]  Jun Wang,et al.  A 3D facial expression database for facial behavior research , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[37]  Patrick J. Flynn,et al.  Using multi-instance enrollment to improve performance of 3D face recognition , 2008, Comput. Vis. Image Underst..

[38]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Melvyn L. Smith,et al.  3D face reconstructions from photometric stereo using near infrared and visible light , 2010, Comput. Vis. Image Underst..

[40]  Ioannis Pitas,et al.  Discriminant Graph Structures for Facial Expression Recognition , 2008, IEEE Transactions on Multimedia.

[41]  Maria Petrou,et al.  Recursive photometric stereo when multiple shadows and highlights are present , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Simon Dobri,et al.  Robust 3D Face Recognition , 2012 .

[43]  Zhi-Hua Zhou,et al.  Face recognition from a single image per person: A survey , 2006, Pattern Recognit..

[44]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[45]  Robert P. W. Duin,et al.  A Generalized Kernel Approach to Dissimilarity-based Classification , 2002, J. Mach. Learn. Res..

[46]  Alan C. Bovik,et al.  Texas 3D Face Recognition Database , 2010, 2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI).

[47]  Rama Chellappa,et al.  An algebraic approach to surface reconstruction from gradient fields , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[48]  Rama Chellappa,et al.  Direct Analytical Methods for Solving Poisson Equations in Computer Vision Problems , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Daoqiang Zhang,et al.  Efficient and robust feature extraction by maximum margin criterion , 2003, IEEE Transactions on Neural Networks.

[50]  Anastasios Tefas,et al.  Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification , 2006, IEEE Transactions on Neural Networks.

[51]  I. Pitas,et al.  Discriminant NMFfaces for Frontal Face Verification , 2005, 2005 IEEE Workshop on Machine Learning for Signal Processing.

[52]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[53]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[54]  Bülent Sankur,et al.  Representation Plurality and Fusion for 3-D Face Recognition , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[55]  Anastasios Tefas,et al.  Frontal Face Authentication Using Discriminating Grids with Morphological Feature Vectors , 2000, IEEE Trans. Multim..

[56]  Anastasios Tefas,et al.  Learning Discriminant Person-Specific Facial Models Using Expandable Graphs , 2007, IEEE Transactions on Information Forensics and Security.

[57]  Seong-Dae Kim,et al.  Combination of Warping Robust Elastic Graph Matching and Kernel-Based Projection Discriminant Analysis for Face Recognition , 2007, IEEE Transactions on Multimedia.

[58]  Jian Yang,et al.  KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Marc Acheroy,et al.  Face verification from 3D and grey level clues , 2001, Pattern Recognit. Lett..

[60]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression Database , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Stefanos Zafeiriou,et al.  2.5D Elastic graph matching , 2011, Comput. Vis. Image Underst..

[62]  Yajie Tian,et al.  Handbook of face recognition , 2003 .