Alpha and beta-voltaic silicon devices operated at cryogenic temperatures: An energy source for deep space exploration

[1]  M. Terranova Nuclear batteries: Current context and near‐term expectations , 2022, International Journal of Energy Research.

[2]  Zhiyu Hu,et al.  Thermoelectric converter: Strategies from materials to device application , 2021, Nano Energy.

[3]  Kai Liu,et al.  Development of Micro-radioisotope Thermoelectric Power Supply for Deep Space Exploration Distributed Wireless Sensor Network , 2020, Advances in Astronautics Science and Technology.

[4]  A. Krasnov,et al.  Advances in the Development of Betavoltaic Power Sources (A Review) , 2020, Instruments and Experimental Techniques.

[5]  Mohammed Ismail,et al.  A comprehensive review of Thermoelectric Generators: Technologies and common applications , 2019, Energy Reports.

[6]  M. Spencer,et al.  High power direct energy conversion by nuclear batteries , 2019, Applied Physics Reviews.

[7]  Kevin L. G. Parkin,et al.  The Breakthrough Starshot system model , 2018, Acta Astronautica.

[8]  V. Blank,et al.  High power density nuclear battery prototype based on diamond Schottky diodes , 2018 .

[9]  Xiao Guo,et al.  Experimental prototype and simulation optimization of micro-radial milliwatt-power radioisotope thermoelectric generator , 2017 .

[10]  J. T. Mullins,et al.  Flexible silicon-based alpha-particle detector , 2017 .

[11]  Steven A. Bohlemann,et al.  Evaluation of a Silicon 90Sr Betavoltaic Power Source , 2016, Scientific Reports.

[12]  N. Jones Tiny ‘chipsat’ spacecraft set for first flight , 2016, Nature.

[13]  V. Blank,et al.  Development of nuclear microbattery prototype based on Schottky barrier diamond diodes , 2015 .

[14]  Zhiheng Xu,et al.  Temperature effect on betavoltaic microbatteries based on Si and GaAs under 63Ni and 147Pm irradiation , 2015 .

[15]  Guanquan Wang,et al.  Investigation on a radiation tolerant betavoltaic battery based on Schottky barrier diode. , 2012, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[16]  Xuyuan Chen,et al.  Demonstration of a High Open-Circuit Voltage GaN Betavoltaic Microbattery , 2011 .

[17]  Jordi Puig-Suari,et al.  The CubeSat: The Picosatellite Standard for Research and Education , 2008 .

[18]  M. Sychov,et al.  Alpha indirect conversion radioisotope power source. , 2008, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[19]  S. Pagano,et al.  The effect of charge collection recovery in silicon p–n junction detectors irradiated by different particles☆ , 2003 .

[20]  S. Pagano,et al.  Radiation hard cryogenic silicon detectors , 2002 .

[21]  P. Ciampolini,et al.  Radiation hard silicon detectors—developments by the RD48 (ROSE) collaboration , 2001 .

[22]  S. Pagano,et al.  Charge collection efficiency of irradiated silicon detector operated at cryogenic temperatures , 2000 .

[23]  V. Palmieri,et al.  Experimental test of the hybrid superconducting pixel detector principle , 1998 .

[24]  V. Palmieri,et al.  Evidence for charge collection efficiency recovery in heavily irradiated silicon detectors operated at cryogenic temperatures , 1998 .

[25]  Josef Kemmer,et al.  Improvement of detector fabrication by the planar process , 1984 .

[26]  A. van Oosterom,et al.  The Solid Angle of a Plane Triangle , 1983, IEEE Transactions on Biomedical Engineering.

[27]  C. Canali,et al.  Measurements of the Average Energy Per Electron-Hole Pair Generation in Silicon between 5-320°K , 1972 .

[28]  Alessandro Golkar,et al.  CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions , 2017 .

[29]  L. Hager,et al.  Monte Carlo modelling of 90Sr/90Y and 85Kr beta fields for Hp(3) measurements. , 2014, Radiation protection dosimetry.

[30]  G. Lutz,et al.  Semiconductor Radiation Detectors , 2007 .

[31]  S. Gabriel,et al.  A critical review of space-cooling techniques , 1996 .