Stretch-induced force enhancement and stability of skeletal muscle myofibrils.

The main purpose of the experiments presented in this chapter was to test the hypothesis that the stretch-induced force enhancement commonly observed in skeletal muscle is associated with sarcomere length instability. Single myofibrils isolated from the rabbit psoas muscle were attached to a nanolever pair for force measurement at the one end, and to a glass needle for controlled displacements at the other end. The image of the striation pattern was projected onto a linear 1024-element photodiode array, which was scanned (20 Hz) to produce a dark-light pattern corresponding to the A- and I-bands, respectively. Starting from a mean SL of approximately 2.55 microm, stretches of a nominal amplitude of 4 to 10% of SL, at a nominal speed of 100 nm x sec(-1) were applied to activated myofibrils (pCa2+ = 4.75). Following stretch, the isometric, steady-state force was greater by 10.9% to 45.9% than the force produced before stretch, and was greater than the force predicted at the corresponding final length. Passive force could not account for the force enhancement. Sarcomere lengths along the activated myofibrils were non-uniform, but remained constant before stretch or during the extended isometric period after stretch. Further, sarcomeres never stretched to a length beyond thick and thin filament overlap. It is concluded that sarcomeres are stable, and therefore the increased force observed after stretch must be a sarcomeric property, not associated with continuous length changes of unstable sarcomeres, as had been assumed in the past.

[1]  U Proske,et al.  Tension changes in the cat soleus muscle following slow stretch or shortening of the contracting muscle , 2000, The Journal of physiology.

[2]  M. Noble,et al.  Residual force enhancement after stretch of contracting frog single muscle fibers , 1982, The Journal of general physiology.

[3]  T. Tsuchiya,et al.  Stiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres. , 1988, The Journal of physiology.

[4]  J. Squire The Structural Basis of Muscular Contraction , 1981, Springer US.

[5]  H. Huxley,et al.  Ultrastructure of skeletal muscle fibers studied by a plunge quick freezing method: myofilament lengths. , 1994, Biophysical journal.

[6]  K. Edman,et al.  Redistribution of sarcomere length during isometric contraction of frog muscle fibres and its relation to tension creep. , 1984, The Journal of physiology.

[7]  D L Morgan An explanation for residual increased tension in striated muscle after stretch during contraction , 1994, Experimental physiology.

[8]  Lucy M. Brown,et al.  Some observations on variations in filament overlap in tetanized muscle fibres and fibres stretched during a tetanus, detected in the electron microscope after rapid fixation , 1991, Journal of Muscle Research & Cell Motility.

[9]  B. C. Abbott,et al.  ABSTRACTS OF MEMOIRS RECORDING WORK DONE AT THE PLYMOUTH LABORATORY THE FORCE EXERTED BY ACTIVE STRIATED MUSCLE DURING AND AFTER CHANGE OF LENGTH , 2022 .

[10]  M. Bartoo,et al.  Active tension generation in isolated skeletal myofibrils , 1993, Journal of Muscle Research & Cell Motility.

[11]  G. Piazzesi,et al.  A combined mechanical and X‐ray diffraction study of stretch potentiation in single frog muscle fibres , 2000, The Journal of physiology.

[12]  M. Noble,et al.  Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres. , 1978, The Journal of physiology.

[13]  G H Pollack,et al.  The sarcomere length-tension relation in skeletal muscle , 1978, The Journal of General Physiology.

[14]  D L Morgan,et al.  The effect on tension of non‐uniform distribution of length changes applied to frog muscle fibres. , 1979, The Journal of physiology.

[15]  W Herzog,et al.  The history dependence of force production in mammalian skeletal muscle following stretch-shortening and shortening-stretch cycles. , 2000, Journal of biomechanics.

[16]  W. Herzog,et al.  Force enhancement following stretching of skeletal muscle: a new mechanism. , 2002, The Journal of experimental biology.

[17]  G. Pollack,et al.  Quantal sarcomere-length changes in relaxed single myofibrils. , 2001, Biophysical journal.

[18]  G I Zahalak,et al.  Can muscle fibers be stable on the descending limbs of their sarcomere length-tension relations? , 1997, Journal of biomechanics.

[19]  L. Hill A‐band length, striation spacing and tension change on stretch of active muscle. , 1977, The Journal of physiology.

[20]  W Herzog,et al.  Stability of muscle fibers on the descending limb of the force-length relation. A theoretical consideration. , 1996, Journal of biomechanics.

[21]  B. C. Abbott,et al.  The physiological cost of negative work , 1952, The Journal of physiology.

[22]  K. Edman,et al.  Strain of passive elements during force enhancement by stretch in frog muscle fibres. , 1996, The Journal of physiology.

[23]  A. Huxley,et al.  The variation in isometric tension with sarcomere length in vertebrate muscle fibres , 1966, The Journal of physiology.