Pure Pairs VI: Excluding an Ordered Tree
暂无分享,去创建一个
[1] Janos Pach,et al. Ordered graphs and large bi-cliques in intersection graphs of curves , 2019, Eur. J. Comb..
[2] A. Hajnal. On spanned subgraphs of graphs , 1977 .
[3] J. Pach,et al. Erdős-Hajnal-type Results on Intersection Patterns of Geometric Objects , 2008 .
[4] Vojtech Rödl. On universality of graphs with uniformly distributed edges , 1986, Discret. Math..
[5] Paul Erdös,et al. Ramsey-type theorems , 1989, Discret. Appl. Math..
[6] Csaba D. Tóth,et al. Turán-type results for partial orders and intersection graphs of convex sets , 2010 .
[7] Noga Alon,et al. Crossing patterns of semi-algebraic sets , 2005, J. Comb. Theory, Ser. A.
[8] Jacob Fox. A Bipartite Analogue of Dilworth’s Theorem , 2006, Order.
[9] Maria Chudnovsky,et al. Trees and linear anticomplete pairs , 2018, 1809.00919.
[10] Vojtech Rödl,et al. A Ramsey-Type Theorem for Orderings of a Graph , 1989, SIAM J. Discret. Math..
[11] Noga Alon,et al. Ramsey-type Theorems with Forbidden Subgraphs , 2001, Comb..
[12] János Pach,et al. Erdős-Hajnal-type results for ordered paths , 2020 .
[13] Maria Chudnovsky,et al. Pure pairs. I. Trees and linear anticomplete pairs , 2018 .