Do bone marrow stromal cells proliferate after transplantation into mice cerebral infarct?—A double labeling study

The present study was aimed to clarify the proliferation capacity of the bone marrow stromal cells (BMSC) transplanted into the brain. The BMSC were harvested from green fluorescence protein (GFP)-transgenic mice, grown to the confluency and passed three times. They were labeled by co-culture with Ferucarbotran, a superparamagnetic iron oxide (SPIO) agent. The proportions of the SPIO-positive cells were evaluated from P3 to P7, using Turnbull blue staining. The GFP-BMSC labeled by Ferucarbotran were transplanted into the ipsilateral striatum of the mice brain subjected to permanent focal ischemia at 7 days after the insult. The distribution and differentiation of GFP- and SPIO-positive cells in the brain were studied 3 months after transplantation, using immunohistochemistry and Turnbull blue staining. As the results, the proportions of the SPIO-positive cells gradually decreased from 93.6% at P3 to 6.5% at P7. Fluorescence immunohistochemistry revealed that the GFP-positive cells were widely distributed around infarct and partially expressed MAP2 and NeuN 3 months after transplantation. However, only a smaller number of SPIO-positive cells could be detected on Turnbull blue staining. The ratio of the SPIO- to GFP-positive cells was approximately 2.7%. The results strongly suggest that the BMSC repeat proliferation many times, migrate into the lesion, and partially express the neuronal phenotype in the host brain during 3 months after transplantation. The double labeling technique would be valuable to prove the proliferation of the transplanted cells in the host tissue because GFP gene and SPIO nanoparticles have different inheritance characteristics.

[1]  S. Kuroda,et al.  Migration and differentiation of nuclear fluorescence‐labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice , 2003, Neuropathology : official journal of the Japanese Society of Neuropathology.

[2]  Eva Syková,et al.  Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles , 2003, Magnetic resonance in medicine.

[3]  Yi Li,et al.  Intravenous Administration of Human Bone Marrow Stromal Cells Induces Angiogenesis in the Ischemic Boundary Zone After Stroke in Rats , 2003, Circulation research.

[4]  M. Chopp,et al.  Treatment of Traumatic Brain Injury in Adult Rats with Intravenous Administration of Human Bone Marrow Stromal Cells , 2001, Neurosurgery.

[5]  Mathias Hoehn,et al.  Monitoring of implanted stem cell migration in vivo: A highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  I. Black,et al.  Adult Bone Marrow Stromal Cells in the Embryonic Brain: Engraftment, Migration, Differentiation, and Long-Term Survival , 2004, The Journal of Neuroscience.

[7]  S. Kuroda,et al.  A pre-clinical assessment model of rat autogeneic bone marrow stromal cell transplantation into the central nervous system. , 2004, Brain research. Brain research protocols.

[8]  A. Manira,et al.  Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Michael Chopp,et al.  Marrow Stromal Cell Transplantation after Traumatic Brain Injury Promotes Cellular Proliferation within the Brain , 2004, Neurosurgery.

[10]  Vítězslav Bryja,et al.  Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord , 2004, Journal of neuroscience research.

[11]  Heather Kalish,et al.  Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. , 2003, Radiology.

[12]  J. Trojanowski,et al.  Transplantation of Cryopreserved Human Embryonal Carcinoma-Derived Neurons (NT2N Cells) Promotes Functional Recovery in Ischemic Rats , 1998, Experimental Neurology.

[13]  W. Heindel,et al.  Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. , 2005, Radiology.

[14]  M. Chopp,et al.  Therapeutic Benefit of Intravenous Administration of Bone Marrow Stromal Cells After Cerebral Ischemia in Rats , 2001, Stroke.

[15]  Mamoru Tamura,et al.  In vivo tracking of bone marrow stromal cells transplanted into mice cerebral infarct by fluorescence optical imaging. , 2004, Brain research. Brain research protocols.

[16]  Scott E. Fraser,et al.  Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study , 2004, NeuroImage.

[17]  Michael Chopp,et al.  Magnetic resonance imaging and neurosphere therapy of stroke in rat , 2003, Annals of neurology.

[18]  I. Black,et al.  Adult rat and human bone marrow stromal cells differentiate into neurons , 2000, Journal of neuroscience research.

[19]  S. Gerson,et al.  Phenotypic and functional comparison of cultures of marrow‐derived mesenchymal stem cells (MSCs) and stromal cells , 1998, Journal of cellular physiology.

[20]  W. Janssen,et al.  Adult Bone Marrow Stromal Cells Differentiate into Neural Cells in Vitro , 2000, Experimental Neurology.

[21]  M. Weiss,et al.  Transplantation of pig stem cells into rat brain: proliferation during the first 8 weeks , 2004, Experimental Neurology.

[22]  D. Prockop,et al.  Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats--similarities to astrocyte grafts. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D J Prockop,et al.  Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  C. Verfaillie,et al.  Human Bone Marrow Stem Cells Exhibit Neural Phenotypes and Ameliorate Neurological Deficits after Grafting into the Ischemic Brain of Rats , 2002, Experimental Neurology.

[25]  A. Majid,et al.  Differences in Vulnerability to Permanent Focal Cerebral Ischemia Among 3 Common Mouse Strains , 2000, Stroke.

[26]  D J Prockop,et al.  Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.