Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications

A current emphasis in empirical force fields is on the development of potential functions that explicitly treat electronic polarizability. In the present article, the commonly used methodologies for modeling electronic polarization are presented along with an overview of selected application studies. Models presented include induced point-dipoles, classical Drude oscillators, and fluctuating charge methods. The theoretical background of each method is followed by an introduction to extended Lagrangian integrators required for computationally tractable molecular dynamics simulations using polarizable force fields. The remainder of the review focuses on application studies using these methods. Emphasis is placed on water models, for which numerous examples exist, with a more thorough discussion presented on the recently published models associated with the Drude-based CHARMM and the AMOEBA force fields. The utility of polarizable models for the study of ion solvation is then presented followed by an overview of studies of small molecules (e.g., CCl4, alkanes, etc.) and macromolecule (proteins, nucleic acids and lipid bilayers) application studies. The review is written with the goal of providing a general overview of the current status of the field and to facilitate future application and developments.

[1]  Greg L. Hura,et al.  What can x-ray scattering tell us about the radial distribution functions of water? , 2000 .

[2]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[3]  Sandeep Patel,et al.  Electrostatic properties of aqueous salt solution interfaces: a comparison of polarizable and nonpolarizable ion models. , 2008, The journal of physical chemistry. B.

[4]  Mark A. Johnson,et al.  Spectroscopic Determination of the OH− Solvation Shell in the OH−·(H2O)n Clusters , 2003, Science.

[5]  G. W. Robinson,et al.  A flexible/polarizable simple point charge water model , 1991 .

[6]  Ruhong Zhou,et al.  A computationally inexpensive modification of the point dipole electrostatic polarization model for molecular simulations , 2003, J. Comput. Chem..

[7]  T. Okada Interpretation of Chromatographic Retention Based on Electrostatic Theories , 1998 .

[8]  M. Tissandier,et al.  The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data , 1998 .

[9]  Alexander D. MacKerell,et al.  CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model , 2004, J. Comput. Chem..

[10]  Aqueous solutions of ionic liquids: study of the solution/vapor interface using molecular dynamics simulations. , 2008, Physical chemistry chemical physics : PCCP.

[11]  Xin Li,et al.  Study of lithium cation in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics. , 2005, The journal of physical chemistry. A.

[12]  Y. Marcus Gibbs energies of transfer of anions from water to mixed aqueous organic solvents. , 2000, Chemical reviews.

[13]  E. Clementi,et al.  Liquid water with an ab initio potential : X-ray and neutron scattering from 238 to 368 K , 1992 .

[14]  Andrew E. Torda,et al.  The GROMOS biomolecular simulation program package , 1999 .

[15]  Daniel Borgis,et al.  Combining a polarizable force‐field and a coarse‐grained polarizable solvent model: Application to long dynamics simulations of bovine pancreatic trypsin inhibitor , 2008, J. Comput. Chem..

[16]  Qiang Zhang,et al.  Study of peptide conformation in terms of the ABEEM/MM method , 2006, J. Comput. Chem..

[17]  R. A. Nistor,et al.  A generalization of the charge equilibration method for nonmetallic materials. , 2006, The Journal of chemical physics.

[18]  Alexander D. MacKerell,et al.  Polarizable empirical force field for nitrogen‐containing heteroaromatic compounds based on the classical Drude oscillator , 2009, J. Comput. Chem..

[19]  Alan K. Soper,et al.  A new determination of the structure of water at 25°C , 1986 .

[20]  M. Cadene,et al.  X-ray structure of a voltage-dependent K+ channel , 2003, Nature.

[21]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[22]  M. Probst,et al.  On the performance of molecular polarization methods. I. Water and carbon tetrachloride close to a point charge. , 2004, The Journal of chemical physics.

[23]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[24]  Peter T. Cummings,et al.  Engineering a simple polarizable model for the molecular simulation of water applicable over wide ranges of state conditions , 1996 .

[25]  Pedro Salvador,et al.  Polarizability of the nitrate anion and its solvation at the air/water interface , 2003 .

[26]  Harold A. Scheraga,et al.  Determination of net atomic charges using a modified partial equalization of orbital electronegativity method. 1. Application to neutral molecules as models for polypeptides , 1990 .

[27]  György G. Ferenczy,et al.  Modeling polarization through induced atomic charges , 2001 .

[28]  James R. Rustad,et al.  A polarizable, dissociating molecular dynamics model for liquid water , 1993 .

[29]  Y. Marcus The hydration entropies of ions and their effects on the structure of water , 1986 .

[30]  Alexander D. MacKerell,et al.  A simple polarizable model of water based on classical Drude oscillators , 2003 .

[31]  Y. Takeda,et al.  Thermodynamic Study on Transfer from Water to Polar Nonaqueous Solvents of 18-Crown-6 and Its 1:1 Complexes with Alkali Metal Ions , 2000 .

[32]  Richard A. Bryce,et al.  A solvation model using a hybrid quantum mechanical/molecular mechanical potential with fluctuating solvent charges , 1997 .

[33]  Jiali Gao,et al.  Simulation of Liquid Amides Using a Polarizable Intermolecular Potential Function , 1996 .

[34]  Alan K. Soper,et al.  The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa , 2000 .

[35]  Peter C. Jordan,et al.  Polarizability effects in a four‐charge model for water , 1992 .

[36]  Haiyan Liu,et al.  Molecular dynamics simulations of liquid methanol and methanol–water mixtures with polarizable models , 2006, J. Comput. Chem..

[37]  M. Sampoli,et al.  PARAMETERIZING POLARIZABLE INTERMOLECULAR POTENTIALS FOR WATER WITH THE ICE 1H PHASE , 1995 .

[38]  Oleg Borodin,et al.  Development of many-body polarizable force fields for Li-battery components: 1. Ether, alkane, and carbonate-based solvents. , 2006, The journal of physical chemistry. B.

[39]  P. G. Hill A UNIFIED FUNDAMENTAL EQUATION FOR THE THERMODYNAMIC PROPERTIES OF H2O , 1990 .

[40]  Jiali Gao,et al.  A molecular-orbital derived polarization potential for liquid water , 1998 .

[41]  Peter G. Kusalik,et al.  The total molecular dipole moment for liquid water , 2002 .

[42]  Paul E. Smith Local chemical potential equalization model for cosolvent effects on biomolecular equilibria , 2004 .

[43]  B. Berne,et al.  Molecular Dynamics Calculation of the Effect of Solvent Polarizability on the Hydrophobic Interaction , 1995 .

[44]  A. Warshel Calculations of enzymatic reactions: calculations of pKa, proton transfer reactions, and general acid catalysis reactions in enzymes. , 1981, Biochemistry.

[45]  J. Kirkwood,et al.  Drude‐Model Calculation of Dispersion Forces. II. The Linear Lattice , 1957 .

[46]  Polarizable and nonpolarizable force fields for alkyl nitrates. , 2008, The journal of physical chemistry. B.

[47]  D. R. Rosseinsky,et al.  Electrode Potentials and Hydration Energies. Theories and Correlations , 1965 .

[48]  Niall J. English,et al.  Structural and dynamical properties of methane clathrate hydrates , 2003, J. Comput. Chem..

[49]  B. Berne,et al.  Combined fluctuating charge and polarizable dipole models: Application to a five-site water potential function , 2001 .

[50]  Alexander D. MacKerell,et al.  Polarizable empirical force field for aromatic compounds based on the classical drude oscillator. , 2007, The journal of physical chemistry. B.

[51]  Pengyu Y. Ren,et al.  Temperature and Pressure Dependence of the AMOEBA Water Model , 2004 .

[52]  Wei Zhang,et al.  Strike a balance: Optimization of backbone torsion parameters of AMBER polarizable force field for simulations of proteins and peptides , 2006, J. Comput. Chem..

[53]  Lawrence R. Pratt,et al.  Effective field of a dipole in non-polar polarizable fluids , 1980 .

[54]  P. Kollman,et al.  Water–water and water–ion potential functions including terms for many body effects , 1985 .

[55]  Francesc Illas,et al.  Decomposition of the chemisorption bond by constrained variations: Order of the variations and construction of the variational spaces , 1992 .

[56]  G. Corongiu Molecular dynamics simulation for liquid water using a polarizable and flexible potential , 1992 .

[57]  P. Jedlovszky,et al.  Temperature dependence of thermodynamic properties of a polarizable potential model of water , 1999 .

[58]  Harry A. Stern,et al.  Development of a polarizable force field for proteins via ab initio quantum chemistry: First generation model and gas phase tests , 2002, J. Comput. Chem..

[59]  Pengyu Y. Ren,et al.  Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: From energetics to structure. , 2006, The Journal of chemical physics.

[60]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[61]  Dan N. Bernardo,et al.  An Anisotropic Polarizable Water Model: Incorporation of All-Atom Polarizabilities into Molecular Mechanics Force Fields , 1994 .

[62]  J. E. Quinn,et al.  Cooperative effects in simulated water , 1979, Nature.

[63]  Feng Wang,et al.  Application of a Drude model to the binding of excess electrons to water clusters , 2002 .

[64]  Robert A. Schoonheydt,et al.  INVESTIGATION OF SUPRAMOLECULAR SYSTEMS BY A COMBINATION OF THE ELECTRONEGATIVITY EQUALIZATION METHOD AND A MONTE CARLO SIMULATION TECHNIQUE , 1995 .

[65]  J. R. Carl,et al.  Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities , 1972 .

[66]  Shoshana J. Wodak,et al.  Molecular dynamics simulation of polarizable water by an extended Lagrangian method , 1992 .

[67]  D. C. Clary,et al.  The Water Dipole Moment in Water Clusters , 1997, Science.

[68]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[69]  David E Draper,et al.  A guide to ions and RNA structure. , 2004, RNA.

[70]  P. Lindan Dynamics with the Shell Model , 1995 .

[71]  Harry A. Stern,et al.  Fluctuating Charge, Polarizable Dipole, and Combined Models: Parameterization from ab Initio Quantum Chemistry , 1999 .

[72]  Pengyu Y. Ren,et al.  Consistent treatment of inter‐ and intramolecular polarization in molecular mechanics calculations , 2002, J. Comput. Chem..

[73]  Zhong-Zhi Yang,et al.  General atom-bond electronegativity equalization method and its application in prediction of charge distributions in polypeptide , 2000 .

[74]  Alexander D. MacKerell,et al.  Polarizable empirical force field for alkanes based on the classical Drude oscillator model. , 2005, The journal of physical chemistry. B.

[75]  A. Soper,et al.  IMPACT OF NEUTRON SCATTERING ON THE STUDY OF WATER AND AQUEOUS SOLUTIONS , 1993 .

[76]  Riccardo Chelli,et al.  Behavior of polarizable models in presence of strong electric fields. I. Origin of nonlinear effects in water point-charge systems. , 2005, The Journal of chemical physics.

[77]  Alexander D. MacKerell,et al.  A polarizable model of water for molecular dynamics simulations of biomolecules , 2006 .

[78]  György G. Ferenczy Charges derived from distributed multipole series , 1991 .

[79]  Pavel Jungwirth,et al.  Specific ion effects at the air/water interface. , 2006, Chemical reviews.

[80]  Michiel Sprik,et al.  A polarizable model for water using distributed charge sites , 1988 .

[81]  Shoshana J. Wodak,et al.  Extended Lagrangian formalism applied to temperature control and electronic polarization effects in molecular dynamics simulations , 1995 .

[82]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[83]  Sandeep Patel,et al.  Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability. , 2007, The Journal of chemical physics.

[84]  B. Roux,et al.  Ion permeation through a narrow channel: using gramicidin to ascertain all-atom molecular dynamics potential of mean force methodology and biomolecular force fields. , 2006, Biophysical journal.

[85]  Jiali Gao,et al.  A coupled polarization-matrix inversion and iteration approach for accelerating the dipole convergence in a polarizable potential function. , 2009, The journal of physical chemistry. A.

[86]  W. Bade Drude‐Model Calculation of Dispersion Forces. I. General Theory , 1957 .

[87]  Alexander D. MacKerell,et al.  Understanding the dielectric properties of liquid amides from a polarizable force field. , 2008, The journal of physical chemistry. B.

[88]  Alexander D. MacKerell,et al.  Additive and Classical Drude Polarizable Force Fields for Linear and Cyclic Ethers. , 2007, Journal of chemical theory and computation.

[89]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[90]  Steven J. Stuart,et al.  Fluctuating charge force fields for aqueous solutions , 1995 .

[91]  D Fincham,et al.  Shell model simulations by adiabatic dynamics , 1993 .

[92]  B. Roux,et al.  Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. , 2006, The journal of physical chemistry. B.

[93]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[94]  Benoît Roux,et al.  Molecular dynamics study of hydration in ethanol-water mixtures using a polarizable force field. , 2005, The journal of physical chemistry. B.

[95]  Benoît Roux,et al.  Atomic Level Anisotropy in the Electrostatic Modeling of Lone Pairs for a Polarizable Force Field Based on the Classical Drude Oscillator. , 2006, Journal of chemical theory and computation.

[96]  T. Halgren,et al.  Polarizable force fields. , 2001, Current opinion in structural biology.

[97]  B. Berne,et al.  Theory of polarizable liquid crystals : optical birefringence , 1993 .

[98]  Wim Klopper,et al.  Computational determination of equilibrium geometry and dissociation energy of the water dimer , 2000 .

[99]  Lloyd D. Stolworthy,et al.  Conformational sensitivity of polyether macrocycles to electrostatic potential: Partial atomic charges, molecular mechanics, and conformational prediction , 1994 .

[100]  Martin J. Field,et al.  HYBRID QUANTUM MECHANICAL/MOLECULAR MECHANICAL FLUCTUATING CHARGE MODELS FOR CONDENSED PHASE SIMULATIONS , 1997 .

[101]  L. Dang,et al.  MOLECULAR DYNAMICS STUDY OF WATER CLUSTERS, LIQUID, AND LIQUID-VAPOR INTERFACE OF WATER WITH MANY-BODY POTENTIALS , 1997 .

[102]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[103]  Celeste Sagui,et al.  Molecular dynamics simulations of the d(CCAACGTTGG)(2) decamer in crystal environment: comparison of atomic point-charge, extra-point, and polarizable force fields. , 2004, The Journal of chemical physics.

[104]  J. A. C. Rullmann,et al.  A polarizable water model for calculation of hydration energies , 1988 .

[105]  C. Reynolds,et al.  Toward Improved Force Fields. 1. Multipole-Derived Atomic Charges , 1997 .

[106]  Michele Parrinello,et al.  Water Molecule Dipole in the Gas and in the Liquid Phase , 1999 .

[107]  Christophe Chipot,et al.  Derivation of Distributed Models of Atomic Polarizability for Molecular Simulations. , 2007, Journal of chemical theory and computation.

[108]  Milton Medeiros Monte Carlo simulation of polarizable systems: Early rejection scheme for improving the performance of adiabatic nuclear and electronic sampling Monte Carlo simulations , 2005 .

[109]  Alan K. Soper,et al.  The quest for the structure of water and aqueous solutions , 1997 .

[110]  J. Ilja Siepmann,et al.  Development of Polarizable Water Force Fields for Phase Equilibrium Calculations , 2000 .

[111]  Michiel Sprik,et al.  Solvent polarization and hydration of the chlorine anion , 1990 .

[112]  Michele Parrinello,et al.  Structural, electronic, and bonding properties of liquid water from first principles , 1999 .

[113]  Giorgina Corongiu,et al.  Molecular dynamics simulations of liquid water using the NCC ab initio potential , 1990 .

[114]  Chang-Sheng Wang,et al.  Calculation of molecular energies by atom-bond electronegativity equalization method , 1998 .

[115]  Robert J. Harrison,et al.  Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles , 2002 .

[116]  Herman J. C. Berendsen,et al.  A mobile charge densities in harmonic oscillators (MCDHO) molecular model for numerical simulations: The water-water interaction , 2000 .

[117]  S. Rick Heat Capacity Change of the Hydrophobic Interaction , 2003 .

[118]  Zhong-Zhi Yang,et al.  Atom–bond electronegativity equalization method. II. Lone-pair electron model , 1999 .

[119]  F. Leusen,et al.  Comparison of Static and Fluctuating Charge Models for Force-Field Methods Applied to Organic Crystals , 2005 .

[120]  G. Karlstroem,et al.  New intermolecular energy calculation scheme: applications to potential surface and liquid properties of water , 1990 .

[121]  M. Harris,et al.  Recent insights into the structure and function of the ribonucleoprotein enzyme ribonuclease P. , 2003, Current opinion in structural biology.

[122]  Anders Wallqvist,et al.  Effective potentials for liquid water using polarizable and nonpolarizable models , 1993 .

[123]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[124]  G. Wilse Robinson,et al.  A new flexible/polarizable water model , 1991 .

[125]  P. Jedlovszky,et al.  Comparison of different water models from ambient to supercritical conditions: A Monte Carlo simulation and molecular Ornstein-Zernike study , 1999 .

[126]  Frank Jensen,et al.  Force field modeling of conformational energies: Importance of multipole moments and intramolecular polarization , 2007 .

[127]  Benoît Roux,et al.  Non-additivity in cation—peptide interactions. A molecular dynamics and ab initio study of Na+ in the gramicidin channel , 1993 .

[128]  W. Bade Drude‐Model Calculation of Dispersion Forces. III. The Fourth‐Order Contribution , 1958 .

[129]  Xin Li,et al.  Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field. , 2005, The journal of physical chemistry. A.

[130]  Zhong-Zhi Yang,et al.  Atom-bond electronegativity equalization method fused into molecular mechanics. I. A seven-site fluctuating charge and flexible body water potential function for water clusters. , 2004, The Journal of chemical physics.

[131]  Alexander D. MacKerell,et al.  Development of a polarizable intermolecular potential function (PIPF) for liquid amides and alkanes. , 2007, Journal of chemical theory and computation.

[132]  Alexander D. MacKerell,et al.  Determination of Electrostatic Parameters for a Polarizable Force Field Based on the Classical Drude Oscillator. , 2005, Journal of chemical theory and computation.

[133]  P. Kollman,et al.  Investigating the Anomalous Solvation Free Energies of Amines with a Polarizable Potential , 1996 .

[134]  F. London,et al.  The general theory of molecular forces , 1937 .

[135]  Joel S. Bader,et al.  Solvation and reorganization energies in polarizable molecular and continuum solvents , 1997 .

[136]  Sotiris S. Xantheas,et al.  The parametrization of a Thole-type all-atom polarizable water model from first principles and its application to the study of water clusters (n=2–21) and the phonon spectrum of ice Ih , 1999 .

[137]  J. Korchowiec,et al.  New energy partitioning scheme based on the self-consistent charge and configuration method for subsystems: Application to water dimer system , 2000 .

[138]  Darrin M. York,et al.  A chemical potential equalization method for molecular simulations , 1996 .

[139]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[140]  Martin J. Field,et al.  A chemical potential equalization model for treating polarization in molecular mechanical force fields , 2000 .

[141]  P. Procacci,et al.  A transferable polarizable electrostatic force field for molecular mechanics based on the chemical potential equalization principle , 2002 .

[142]  Frank H. Stillinger,et al.  Polarization model for water and its ionic dissociation products , 1978 .

[143]  William L Jorgensen,et al.  Special Issue on Polarization. , 2007, Journal of chemical theory and computation.

[144]  K. Yamanaka,et al.  Structure of water in the liquid and supercritical states by rapid x‐ray diffractometry using an imaging plate detector , 1994 .

[145]  Anders Wallqvist,et al.  A molecular dynamics study of polarizable water , 1989 .

[146]  Milton Medeiros,et al.  Gibbs ensemble Monte Carlo simulation of the properties of water with a fluctuating charges model , 1997 .

[147]  Paul Tavan,et al.  The polarizability of point-polarizable water models: density functional theory/molecular mechanics results. , 2008, The journal of physical chemistry. B.

[148]  Han Myoung Lee,et al.  Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer , 2000 .

[149]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[150]  A polarizable force field for computing the infrared spectra of the polypeptide backbone. , 2008, The journal of physical chemistry. B.

[151]  P. T. V. Duijnen,et al.  Molecular and Atomic Polarizabilities: Thole's Model Revisited , 1998 .

[152]  A. Pyle,et al.  Alternative roles for metal ions in enzyme catalysis and the implications for ribozyme chemistry. , 2007, Chemical reviews.

[153]  P. Kebarle,et al.  Hydration of the alkali ions in the gas phase. Enthalpies and entropies of reactions M+(H2O)n-1 + H2O = M+(H2O)n , 1970 .

[154]  Steven J. Stuart,et al.  Surface Curvature Effects in the Aqueous Ionic Solvation of the Chloride Ion , 1999 .

[155]  Stephen C. Parker,et al.  Molecular-dynamics simulation of MgO surfaces in liquid water using a shell-model potential for water , 1998 .

[156]  C. Sagui,et al.  Molecular dynamics simulations of polarizable DNA in crystal environment , 2006 .

[157]  S. Rick Simulations of ice and liquid water over a range of temperatures using the fluctuating charge model , 2001 .

[158]  F. Lado Molecular theory of a charged particle in a polarizable nonpolar liquid , 1997 .

[159]  K. Gubbins,et al.  PHASE COEXISTENCE PROPERTIES OF POLARIZABLE WATER MODELS , 1998 .

[160]  Koji Ando,et al.  Fluctuating Charge Study of Polarization Effects in Chlorinated Organic Liquids , 2001 .

[161]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard–Jones parameters , 1998 .

[162]  Benoît Roux,et al.  Potential energy function for cation–peptide interactions: An ab initio study , 1995, J. Comput. Chem..

[163]  O. Borodin,et al.  Force Field Development and MD Simulations of Poly(ethylene oxide)/LiBF4 Polymer Electrolytes , 2003 .

[164]  Jaroslav Koca,et al.  Formation pathways of a guanine-quadruplex DNA revealed by molecular dynamics and thermodynamic analysis of the substates. , 2003, Biophysical journal.

[165]  J. Hanlon,et al.  Effective Ionic Charge in Alkali Halides , 1959 .

[166]  Michiel Sprik,et al.  COMPUTER-SIMULATION OF THE DYNAMICS OF INDUCED POLARIZATION FLUCTUATIONS IN WATER , 1991 .

[167]  Richard A Friesner,et al.  Efficient Simulation Method for Polarizable Protein Force Fields:  Application to the Simulation of BPTI in Liquid Water. , 2005, Journal of chemical theory and computation.

[168]  I. Ortega‐Blake,et al.  Liquid methanol Monte Carlo simulations with a refined potential which includes polarizability, nonadditivity, and intramolecular relaxation. , 2007, The Journal of chemical physics.

[169]  Sandeep Patel,et al.  Structure, thermodynamics, and liquid-vapor equilibrium of ethanol from molecular-dynamics simulations using nonadditive interactions. , 2005, The Journal of chemical physics.

[170]  Peter A. Kollman,et al.  Ion solvation in polarizable water: molecular dynamics simulations , 1991 .

[171]  Rajiv K. Kalia,et al.  DYNAMICS OF OXIDATION OF ALUMINUM NANOCLUSTERS USING VARIABLE CHARGE MOLECULAR-DYNAMICS SIMULATIONS ON PARALLEL COMPUTERS , 1999 .

[172]  O. Borodin,et al.  Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped Oligoether, polyether, and carbonate-based electrolytes. , 2006, The journal of physical chemistry. B.

[173]  Jongseob Kim,et al.  Structures, energetics, and spectra of fluoride–water clusters F−(H2O)n, n=1–6: Ab initio study , 1999 .

[174]  Tahir Çagin,et al.  Dynamic Charge Equilibration‐Morse stretch force field: Application to energetics of pure silica zeolites , 2002, J. Comput. Chem..

[175]  O. Borodin,et al.  LiTFSI structure and transport in ethylene carbonate from molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[176]  P. Procacci,et al.  Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method , 1999 .

[177]  R. Dutzler,et al.  X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity , 2002, Nature.

[178]  Nohad Gresh,et al.  Key role of the polarization anisotropy of water in modeling classical polarizable force fields. , 2007, The journal of physical chemistry. A.

[179]  Steven J. Stuart,et al.  Effects of Polarizability on the Hydration of the Chloride Ion , 1996 .

[180]  Ronald M. Levy,et al.  SOLVATION FREE ENERGIES OF SMALL AMIDES AND AMINES FROM MOLECULAR DYNAMICS/FREE ENERGY PERTURBATION SIMULATIONS USING PAIRWISE ADDITIVE AND MANY-BODY POLARIZABLE POTENTIALS , 1995 .

[181]  Bruce J. Berne,et al.  Dynamical Fluctuating Charge Force Fields: The Aqueous Solvation of Amides , 1996 .

[182]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[183]  J. Kaplan,et al.  Biochemistry of Na,K-ATPase. , 2002, Annual review of biochemistry.

[184]  Georgios Archontis,et al.  Dissecting the stabilization of iodide at the air–water interface into components: A free energy analysis , 2006 .

[185]  Sandeep Patel,et al.  Revised charge equilibration potential for liquid alkanes. , 2008, The journal of physical chemistry. B.

[186]  G. Baughman,et al.  The Solvation of Electrolytes in Dioxane-Water Mixtures, as Deduced from the Effect of Solvent Change on the Standard Partial Molar Free Energy1 , 1960 .

[187]  Glenn J. Martyna,et al.  A unified formalism for many-body polarization and dispersion: The quantum Drude model applied to fluid xenon , 2006 .

[188]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[189]  P. Kollman,et al.  Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics: Water, Methanol, and N-Methylacetamide , 1995 .

[190]  J. Alejandre,et al.  Effect of flexibility on surface tension and coexisting densities of water. , 2008, The Journal of chemical physics.

[191]  Shoshana J. Wodak,et al.  Molecular dynamics study of methane hydration and methane association in a polarizable water phase , 1993 .

[192]  Dean R. Haeffner,et al.  Electron distribution in water , 2000 .

[193]  A. Narten,et al.  Atom Pair Distribution Functions of Liquid Water at 25�C from Neutron Diffraction , 1982, Science.

[194]  Consistent charge equilibration (CQEq) method: application to amino acids and crambin protein , 2004 .

[195]  Ian R. McDonald,et al.  Introduction of the shell model of ionic polarizability into molecular dynamics calculations , 1974 .

[196]  Oleg Borodin,et al.  Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations , 2006 .

[197]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[198]  Alan Grossfield,et al.  Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. , 2006, The journal of physical chemistry. B.

[199]  G. S. Manning The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides , 1978, Quarterly Reviews of Biophysics.

[200]  George A. Kaminski,et al.  Development of an Accurate and Robust Polarizable Molecular Mechanics Force Field from ab Initio Quantum Chemistry , 2004 .

[201]  Charles L Brooks,et al.  Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials. , 2006, The Journal of chemical physics.

[202]  An application of the consistent charge equilibration (CQEq) method to guanidinium ionic liquid systems , 2008 .

[203]  Corey J. Weinheimer,et al.  Size selectivity by cation–π interactions: Solvation of K+ and Na+ by benzene and water , 1999 .

[204]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[205]  M. Sampoli,et al.  Parameterizing a polarizable intermolecular potential for water , 1995 .

[206]  P. Cummings,et al.  RESEARCH NOTE Calculation of the vapour-liquid coexistence curve for a fluctuating point charge water model , 1999 .

[207]  David van der Spoel,et al.  Molecular Dynamics Simulations of Water with Novel Shell-Model Potentials , 2001 .

[208]  H. Al‐Hashimi,et al.  RNA dynamics: it is about time. , 2008, Current opinion in structural biology.

[209]  Arieh Warshel,et al.  Calculations of chemical processes in solutions , 1979 .

[210]  A. Morita,et al.  An ab initio analysis of medium perturbation on molecular polarizabilities , 1999 .

[211]  Jiali Gao,et al.  A Polarizable Intermolecular Potential Function for Simulation of Liquid Alcohols , 1995 .

[212]  A. Ménez,et al.  Structural studies of human alkaline phosphatase in complex with strontium: Implication for its secondary effect in bones , 2006, Protein science : a publication of the Protein Society.

[213]  Michael W. Mahoney,et al.  Quantum, intramolecular flexibility, and polarizability effects on the reproduction of the density anomaly of liquid water by simple potential functions , 2001 .

[214]  Alexander D. MacKerell Empirical force fields for biological macromolecules: Overview and issues , 2004, J. Comput. Chem..

[215]  Oleg Borodin,et al.  Molecular dynamics simulations of lithium alkyl carbonates. , 2006, The journal of physical chemistry. B.

[216]  Frank Weinhold,et al.  NATURE OF H-BONDING IN CLUSTERS, LIQUIDS, AND ENZYMES : AN AB INITIO, NATURAL BOND ORBITAL PERSPECTIVE , 1997 .

[217]  S. Xantheas,et al.  Critical Study of Fluoride−Water Interactions , 1996 .

[218]  Chang-Sheng Wang,et al.  Atom-Bond Electronegativity Equalization Method and its Applications Based on Density Functional Theory , 2003 .

[219]  B. Berne,et al.  Free Energy of the Hydrophobic Interaction from Molecular Dynamics Simulations: The Effects of Solute and Solvent Polarizability , 1997 .

[220]  Yingkai Zhang,et al.  Interfacing ab initio Quantum Mechanical Method with Classical Drude Osillator Polarizable Model for Molecular Dynamics Simulation of Chemical Reactions. , 2008, Journal of chemical theory and computation.

[221]  O. Kitao,et al.  I: METHODOLOGY , 2003, Deception: Counterdeception and Counterintelligence.

[222]  Gail J. Bartlett,et al.  Catalysing new reactions during evolution: economy of residues and mechanism. , 2003, Journal of molecular biology.

[223]  Alexander D. MacKerell,et al.  Polarizable empirical force field for the primary and secondary alcohol series based on the classical Drude model. , 2007, Journal of chemical theory and computation.

[224]  Chuan He,et al.  Selective recognition of metal ions by metalloregulatory proteins. , 2008, Current opinion in chemical biology.

[225]  J. Šponer,et al.  Molecular dynamics simulations and their application to four-stranded DNA , 2007, Methods.

[226]  Terry P. Lybrand,et al.  A new water potential including polarization: Application to gas‐phase, liquid, and crystal properties of water , 1990 .

[227]  M. Berkowitz,et al.  The solvation of Cl-, Br-, and I- in acetonitrile clusters: Photoelectron spectroscopy and molecular dynamics simulations , 1996 .

[228]  I. M. Svishchev,et al.  PHASE COEXISTENCE PROPERTIES FOR THE POLARIZABLE POINT CHARGE MODEL OF WATER AND THE EFFECTS OF APPLIED ELECTRIC FIELD , 1999 .

[229]  M. Gillan,et al.  Shell-model molecular dynamics simulation of superionic conduction in CaF2 , 1993 .

[230]  Pengyu Y. Ren,et al.  Calculation of protein–ligand binding free energy by using a polarizable potential , 2008, Proceedings of the National Academy of Sciences.

[231]  Edward D Harder,et al.  A theoretical study of aqueous solvation of K comparing ab initio, polarizable, and fixed-charge models. , 2007, Journal of chemical theory and computation.

[232]  A. Grossfield Dependence of ion hydration on the sign of the ion's charge. , 2005, The Journal of chemical physics.

[233]  Riccardo Chelli,et al.  Electrical response in chemical potential equalization schemes , 1999 .

[234]  Kenneth M. Merz,et al.  The Role of Polarization and Charge Transfer in the Solvation of Biomolecules , 1999 .

[235]  Felix Franks,et al.  Water:A Comprehensive Treatise , 1972 .

[236]  Zhong-Zhi Yang,et al.  STUDY ON COMPLEXES OF TRYPSIN AND ITS INHIBITORS BY MEANS OF ATOM-BOND ELECTRONEGATIVITY EQUALIZATION METHOD FUSED INTO MOLECULAR MECHANICS (ABEEM/MM) , 2007 .

[237]  A. T. Amos,et al.  Bond properties using a modern version of the Drude model , 1996 .

[238]  M. Probst,et al.  On the performance of molecular polarization methods. II. Water and carbon tetrachloride close to a cation. , 2005, The Journal of chemical physics.

[239]  S J Wodak,et al.  Calculations of electrostatic properties in proteins. Analysis of contributions from induced protein dipoles. , 1987, Journal of molecular biology.

[240]  T. Walsh,et al.  Molecular dynamics simulations of peptide carboxylate hydration. , 2006, Physical chemistry chemical physics : PCCP.

[241]  Chang-Sheng Wang,et al.  Atom−Bond Electronegativity Equalization Method. 1. Calculation of the Charge Distribution in Large Molecules , 1997 .

[242]  Yan Zhang,et al.  Flexible-Boundary Quantum-Mechanical/Molecular-Mechanical Calculations:  Partial Charge Transfer between the Quantum-Mechanical and Molecular-Mechanical Subsystems. , 2008, Journal of chemical theory and computation.

[243]  T. Okada Characterization of poly(oxyethylene) complex formation with alkali-metal cations in a cation-exchange resin phase , 1991 .

[244]  Richard A. Friesner,et al.  Constructing ab initio force fields for molecular dynamics simulations , 1998 .

[245]  F. Gygi,et al.  A first principles molecular dynamics simulation of the hydrated magnesium ion , 2001 .

[246]  J. Åqvist,et al.  Ion-water interaction potentials derived from free energy perturbation simulations , 1990 .

[247]  Peter A. Kollman,et al.  Free energy calculations on the relative solvation free energies of benzene, anisole and 1,2,3-trimethoxybenzene : theoretical and experimental analysis of aromatic methoxy solvation , 1991 .

[248]  Ye,et al.  Dielectric theory for polar molecules with fluctuating polarizability , 1980 .

[249]  Pengyu Y. Ren,et al.  Ion solvation thermodynamics from simulation with a polarizable force field. , 2003, Journal of the American Chemical Society.

[250]  David Feller,et al.  Hydrogen bond energy of the water dimer , 1996 .

[251]  L. Dang,et al.  Molecular dynamics simulations of aqueous ionic clusters using polarizable water , 1993 .

[252]  Yang Zhong,et al.  Thermodynamic and structural properties of methanol–water solutions using nonadditive interaction models , 2008, J. Comput. Chem..

[253]  N. Matubayasi,et al.  Structure and dynamics of water: from ambient to supercritical , 2001 .

[254]  M. Berkowitz,et al.  Liquid-vapor interface of TIP4P water: comparison between a polarizable and a nonpolarizable model , 1991 .

[255]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[256]  M. Tuckerman,et al.  Understanding Modern Molecular Dynamics: Techniques and Applications , 2000 .

[257]  Wilfred F. van Gunsteren,et al.  Development of a simple, self-consistent polarizable model for liquid water , 2003 .

[258]  Alan K. Soper,et al.  Site–site pair correlation functions of water from 25 to 400 °C: Revised analysis of new and old diffraction data , 1997 .

[259]  Zhong-Zhi Yang,et al.  Atom-Bond Electronegativity Equalization Method Fused into Molecular Mechanics. II. A Seven-Site Fluctuating Charge and Flexible Body Water Potential Function for Liquid Water , 2004 .

[260]  I. Ortega‐Blake,et al.  Nonadditivity in an analytical intermolecular potential: The water–water interaction , 1990 .

[261]  RNA structure, metal ions, and catalysis. , 1999, Current opinion in chemical biology.

[262]  Sandeep Patel,et al.  Comparison of the Solvation Structure of Polarizable and Nonpolarizable Ions in Bulk Water and Near the Aqueous Liquid-Vapor Interface , 2008 .

[263]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[264]  Jürg Hutter,et al.  Car–Parrinello molecular dynamics simulation of the hydrated calcium ion , 2002 .

[265]  John S. Muenter,et al.  Electric dipole moments of low J states of H2O and D2O , 1973 .

[266]  Richard A Friesner,et al.  Modeling Polarization in Proteins and Protein-ligand Complexes: Methods and Preliminary Results. , 2005, Advances in protein chemistry.

[267]  A. Wallqvist Polarizable water at a hydrophobic wall , 1990 .

[268]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[269]  C. Sagui,et al.  Molecular dynamics simulations of DNA with polarizable force fields: convergence of an ideal B-DNA structure to the crystallographic structure. , 2006, The journal of physical chemistry. B.

[270]  Yixiang Cao,et al.  A Polarizable Force Field and Continuum Solvation Methodology for Modeling of Protein-Ligand Interactions. , 2005, Journal of chemical theory and computation.

[271]  Peter A. Kollman,et al.  Implementation of nonadditive intermolecular potentials by use of molecular dynamics: development of a water-water potential and water-ion cluster interactions , 1990 .

[272]  Zhong-Zhi Yang,et al.  An investigation of alkane conformations based on the ABEEM/MM model , 2005 .

[273]  I. Ortega‐Blake,et al.  Water models based on a single potential energy surface and different molecular degrees of freedom. , 2005, The Journal of chemical physics.

[274]  Michael W. Mahoney,et al.  A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions , 2000 .

[275]  S. Lippard,et al.  New metal complexes as potential therapeutics. , 2003, Current opinion in chemical biology.

[276]  Jean-Christophe Soetens Marilia T. C. Martins Costa Claude Millot RESEARCH NOTE Static dielectric constant of the polarizable NCC water model , 1998 .

[277]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[278]  Paul Drude,et al.  The Theory of Optics , 1959 .

[279]  O. Borodin,et al.  Molecular Dynamics Simulations of Comb-Branched Poly(epoxide ether)-Based Polymer Electrolytes , 2007 .

[280]  John P. Brodholt,et al.  Analysis of the hydrogen-bonded structure of water from ambient to supercritical conditions , 1998 .

[281]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[282]  P. Procacci,et al.  Polarization response of water and methanol investigated by a polarizable force field and density functional theory calculations: implications for charge transfer. , 2005, The Journal of chemical physics.

[283]  David Rueda,et al.  Exploring RNA folding one molecule at a time. , 2008, Current opinion in chemical biology.

[284]  Greg L. Hura,et al.  Water structure from scattering experiments and simulation. , 2002, Chemical reviews.

[285]  Jenn-Huei Lii,et al.  Molecular polarizabilities and induced dipole moments in molecular mechanics , 2000 .

[286]  M. Swart,et al.  DRF90: a polarizable force field , 2006 .

[287]  Georgios Archontis,et al.  Attraction of iodide ions by the free water surface, revealed by simulations with a polarizable force field based on Drude oscillators. , 2005, The journal of physical chemistry. B.

[288]  Ruhong Zhou,et al.  Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model , 1999 .

[289]  P. Jungwirth,et al.  Propensity of heavier halides for the water/vapor interface revisited using the Amoeba force field , 2005 .

[290]  Toby W Allen,et al.  Assessing atomistic and coarse-grained force fields for protein-lipid interactions: the formidable challenge of an ionizable side chain in a membrane. , 2008, The journal of physical chemistry. B.

[291]  Peter J. Winn,et al.  Towards improved force fields: III. Polarization through modified atomic charges , 1999, Journal of computational chemistry.

[292]  J. Dore Structural studies of water and other hydrogen—bonded liquids by neutron diffraction☆ , 1991 .

[293]  J. Dore,et al.  Structural characteristics of hydrogen-bonded networks in water and ice systems , 1995 .

[294]  Greg L. Hura,et al.  A high-quality x-ray scattering experiment on liquid water at ambient conditions , 2000 .

[295]  Arieh Warshel,et al.  Incorporating electric polarizabilities in water-water interaction potentials , 1990 .

[296]  D. Tobias,et al.  Ion spatial distributions at the liquid-vapor interface of aqueous potassium fluoride solutions. , 2008, Physical chemistry chemical physics : PCCP.

[297]  B. Roux,et al.  Molecular dynamics study of calbindin D9k in the apo and singly and doubly calcium‐loaded states , 1998, Proteins.

[298]  B. Roux,et al.  Energetics of ion conduction through the gramicidin channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[299]  R. Nalewajski Normal (decoupled) representation of electronegativity equalization equations in a molecule , 1991 .

[300]  Peter Itskowitz,et al.  Chemical Potential Equalization Principle: Direct Approach from Density Functional Theory , 1997 .

[301]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[302]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[303]  Douglas J. Tobias,et al.  Electronic Polarization and Hydration of the Dimethyl phosphate Anion: An ab Initio Molecular Dynamics Study , 2001 .

[304]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[305]  Sandeep Patel,et al.  A nonadditive methanol force field: bulk liquid and liquid-vapor interfacial properties via molecular dynamics simulations using a fluctuating charge model. , 2005, The Journal of chemical physics.

[306]  B. Roos,et al.  The coordination of uranyl in water: a combined quantum chemical and molecular simulation study. , 2005, Journal of the American Chemical Society.

[307]  Hideo Watanabe,et al.  Molecular dynamics simulation of NaCl at the air/water interface with shell model , 2008 .

[308]  L. Dang,et al.  The nonadditive intermolecular potential for water revised , 1992 .

[309]  R. Nalewajski Charge sensitivities of the externally interacting open reactants , 2000 .

[310]  Matthew L. Leininger,et al.  Anchoring the water dimer potential energy surface with explicitly correlated computations and focal point analyses , 2002 .

[311]  M. Parrinello,et al.  Erratum: Water Molecule Dipole in the Gas and in the Liquid Phase [Phys. Rev. Lett. 82, 3308 (1999)] , 1999 .

[312]  Jiali Gao,et al.  Toward a Molecular Orbital Derived Empirical Potential for Liquid Simulations , 1997 .

[313]  Richard A Friesner,et al.  Structure and dynamics of the solvation of bovine pancreatic trypsin inhibitor in explicit water: a comparative study of the effects of solvent and protein polarizability. , 2005, The journal of physical chemistry. B.

[314]  Arieh Warshel,et al.  Polarizable Force Fields:  History, Test Cases, and Prospects. , 2007, Journal of chemical theory and computation.

[315]  Sandeep Patel,et al.  Origin and control of superlinear polarizability scaling in chemical potential equalization methods. , 2008, The Journal of chemical physics.

[316]  Samuel Krimm,et al.  A new electrostatic model for molecular mechanics force fields , 2000 .

[317]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[318]  R. J. Boyd,et al.  Polarizable point‐charge model for water: Results under normal and extreme conditions , 1996 .