Entropy solutions for stochastic porous media equations
暂无分享,去创建一个
[1] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[2] Michael G. Crandall,et al. GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES, , 1971 .
[3] Shinzo Watanabe,et al. On the uniqueness of solutions of stochastic difierential equations , 1971 .
[4] D. Dawson. Stochastic evolution equations , 1972 .
[5] É. Pardoux,et al. Équations aux dérivées partielles stochastiques non linéaires monotones : étude de solutions fortes de type Ito , 1975 .
[6] Wendell H. Fleming,et al. Distributed Parameter Stochastic Systems in Population Biology , 1975 .
[7] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[8] D. Aronson. The porous medium equation , 1986 .
[9] 国田 寛. Stochastic flows and stochastic differential equations , 1990 .
[10] Mtw,et al. Stochastic flows and stochastic differential equations , 1990 .
[11] B. Perthame,et al. A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .
[12] Felix Otto,et al. L1-Contraction and Uniqueness for Quasilinear Elliptic–Parabolic Equations , 1996 .
[13] J. Carrillo. Entropy Solutions for Nonlinear Degenerate Problems , 1999 .
[14] J. U. Kim,et al. On a stochastic scalar conservation law , 2003 .
[15] Gui-Qiang G. Chen,et al. Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations , 2003 .
[16] Gui-Qiang G. Chen,et al. QUASILINEAR ANISOTROPIC DEGENERATE PARABOLIC EQUATIONS WITH TIME-SPACE DEPENDENT DIFFUSION COEFFICIENTS , 2005 .
[17] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[18] Feng-Yu Wang,et al. Stochastic generalized porous media and fast diffusion equations , 2006, math/0602369.
[19] Giuseppe Da Prato,et al. Existence and uniqueness of nonnegative solutions to the stochastic porous media equation , 2007 .
[20] M. Röckner,et al. A Concise Course on Stochastic Partial Differential Equations , 2007 .
[21] D. Nualart,et al. Stochastic scalar conservation laws , 2008 .
[22] V. Barbu,et al. STRONG SOLUTIONS FOR STOCHASTIC POROUS MEDIA EQUATIONS WITH JUMPS , 2008, 0802.3594.
[23] A. Debussche,et al. Scalar conservation laws with stochastic forcing , 2010, 1001.5415.
[24] Benjamin Gess,et al. Strong Solutions for Stochastic Partial Differential Equations of Gradient Type , 2011, 1104.4243.
[25] N. Krylov. A relatively short proof of Itô’s formula for SPDEs and its applications , 2012, 1208.3709.
[26] Viorel Barbu,et al. Localization of solutions to stochastic porous media equations: finite speed of propagation , 2012 .
[27] Guy Vallet,et al. THE CAUCHY PROBLEM FOR CONSERVATION LAWS WITH A MULTIPLICATIVE STOCHASTIC PERTURBATION , 2012 .
[28] K. Kadlec,et al. Stochastic Evolution Equations , 2013 .
[29] M. Hofmanová. Degenerate parabolic stochastic partial differential equations , 2013 .
[30] Benjamin Gess,et al. Multi-valued, singular stochastic evolution inclusions , 2011, 1112.5672.
[31] Ananta K. Majee,et al. Stochastic conservation laws: Weak-in-time formulation and strong entropy condition☆ , 2013, 1305.7087.
[32] Viorel Barbu,et al. An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise , 2014, 1402.4940.
[33] M. Röckner,et al. Stochastic Partial Differential Equations: An Introduction , 2015 .
[34] Máté Gerencsér,et al. On the boundedness of solutions of SPDEs , 2013, 1312.3843.
[35] Guy Vallet,et al. A degenerate parabolic–hyperbolic Cauchy problem with a stochastic force , 2015 .
[36] V. Barbu,et al. Stochastic porous media equations in Rd , 2015 .
[37] Kenneth Hvistendahl Karlsen,et al. On stochastic conservation laws and Malliavin calculus , 2015, 1507.05518.
[38] Arnaud Debussche,et al. A Regularity Result for Quasilinear Stochastic Partial Differential Equations of Parabolic Type , 2014, SIAM J. Math. Anal..
[39] Viorel Barbu,et al. Stochastic Porous Media Equations , 2016 .
[40] Arnaud Debussche,et al. Degenerate parabolic stochastic partial differential equations: Quasilinear case , 2013, 1309.5817.
[41] Panagiotis E. Souganidis,et al. Stochastic non-isotropic degenerate parabolic–hyperbolic equations , 2016, 1611.01303.
[42] Well-posedness of stochastic porous media equations with nonlinear, conservative noise , 2017 .
[43] Benjamin Gess,et al. Well-posedness and regularity for quasilinear degenerate parabolic-hyperbolic SPDE , 2016, The Annals of Probability.
[44] Benjamin J. Fehrman,et al. Path-by-path well-posedness of nonlinear diffusion equations with multiplicative noise , 2018, Journal de Mathématiques Pures et Appliquées.
[45] Michael Röckner,et al. Probabilistic Representation for Solutions to Nonlinear Fokker-Planck Equations , 2018, SIAM J. Math. Anal..
[46] Viorel Barbu,et al. Nonlinear Fokker–Planck equations driven by Gaussian linear multiplicative noise , 2017, Journal of Differential Equations.