Entropy solutions for stochastic porous media equations

[1]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[2]  Michael G. Crandall,et al.  GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES, , 1971 .

[3]  Shinzo Watanabe,et al.  On the uniqueness of solutions of stochastic difierential equations , 1971 .

[4]  D. Dawson Stochastic evolution equations , 1972 .

[5]  É. Pardoux,et al.  Équations aux dérivées partielles stochastiques non linéaires monotones : étude de solutions fortes de type Ito , 1975 .

[6]  Wendell H. Fleming,et al.  Distributed Parameter Stochastic Systems in Population Biology , 1975 .

[7]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[8]  D. Aronson The porous medium equation , 1986 .

[9]  国田 寛 Stochastic flows and stochastic differential equations , 1990 .

[10]  Mtw,et al.  Stochastic flows and stochastic differential equations , 1990 .

[11]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .

[12]  Felix Otto,et al.  L1-Contraction and Uniqueness for Quasilinear Elliptic–Parabolic Equations , 1996 .

[13]  J. Carrillo Entropy Solutions for Nonlinear Degenerate Problems , 1999 .

[14]  J. U. Kim,et al.  On a stochastic scalar conservation law , 2003 .

[15]  Gui-Qiang G. Chen,et al.  Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations , 2003 .

[16]  Gui-Qiang G. Chen,et al.  QUASILINEAR ANISOTROPIC DEGENERATE PARABOLIC EQUATIONS WITH TIME-SPACE DEPENDENT DIFFUSION COEFFICIENTS , 2005 .

[17]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[18]  Feng-Yu Wang,et al.  Stochastic generalized porous media and fast diffusion equations , 2006, math/0602369.

[19]  Giuseppe Da Prato,et al.  Existence and uniqueness of nonnegative solutions to the stochastic porous media equation , 2007 .

[20]  M. Röckner,et al.  A Concise Course on Stochastic Partial Differential Equations , 2007 .

[21]  D. Nualart,et al.  Stochastic scalar conservation laws , 2008 .

[22]  V. Barbu,et al.  STRONG SOLUTIONS FOR STOCHASTIC POROUS MEDIA EQUATIONS WITH JUMPS , 2008, 0802.3594.

[23]  A. Debussche,et al.  Scalar conservation laws with stochastic forcing , 2010, 1001.5415.

[24]  Benjamin Gess,et al.  Strong Solutions for Stochastic Partial Differential Equations of Gradient Type , 2011, 1104.4243.

[25]  N. Krylov A relatively short proof of Itô’s formula for SPDEs and its applications , 2012, 1208.3709.

[26]  Viorel Barbu,et al.  Localization of solutions to stochastic porous media equations: finite speed of propagation , 2012 .

[27]  Guy Vallet,et al.  THE CAUCHY PROBLEM FOR CONSERVATION LAWS WITH A MULTIPLICATIVE STOCHASTIC PERTURBATION , 2012 .

[28]  K. Kadlec,et al.  Stochastic Evolution Equations , 2013 .

[29]  M. Hofmanová Degenerate parabolic stochastic partial differential equations , 2013 .

[30]  Benjamin Gess,et al.  Multi-valued, singular stochastic evolution inclusions , 2011, 1112.5672.

[31]  Ananta K. Majee,et al.  Stochastic conservation laws: Weak-in-time formulation and strong entropy condition☆ , 2013, 1305.7087.

[32]  Viorel Barbu,et al.  An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise , 2014, 1402.4940.

[33]  M. Röckner,et al.  Stochastic Partial Differential Equations: An Introduction , 2015 .

[34]  Máté Gerencsér,et al.  On the boundedness of solutions of SPDEs , 2013, 1312.3843.

[35]  Guy Vallet,et al.  A degenerate parabolic–hyperbolic Cauchy problem with a stochastic force , 2015 .

[36]  V. Barbu,et al.  Stochastic porous media equations in Rd , 2015 .

[37]  Kenneth Hvistendahl Karlsen,et al.  On stochastic conservation laws and Malliavin calculus , 2015, 1507.05518.

[38]  Arnaud Debussche,et al.  A Regularity Result for Quasilinear Stochastic Partial Differential Equations of Parabolic Type , 2014, SIAM J. Math. Anal..

[39]  Viorel Barbu,et al.  Stochastic Porous Media Equations , 2016 .

[40]  Arnaud Debussche,et al.  Degenerate parabolic stochastic partial differential equations: Quasilinear case , 2013, 1309.5817.

[41]  Panagiotis E. Souganidis,et al.  Stochastic non-isotropic degenerate parabolic–hyperbolic equations , 2016, 1611.01303.

[42]  Well-posedness of stochastic porous media equations with nonlinear, conservative noise , 2017 .

[43]  Benjamin Gess,et al.  Well-posedness and regularity for quasilinear degenerate parabolic-hyperbolic SPDE , 2016, The Annals of Probability.

[44]  Benjamin J. Fehrman,et al.  Path-by-path well-posedness of nonlinear diffusion equations with multiplicative noise , 2018, Journal de Mathématiques Pures et Appliquées.

[45]  Michael Röckner,et al.  Probabilistic Representation for Solutions to Nonlinear Fokker-Planck Equations , 2018, SIAM J. Math. Anal..

[46]  Viorel Barbu,et al.  Nonlinear Fokker–Planck equations driven by Gaussian linear multiplicative noise , 2017, Journal of Differential Equations.