A new quantum lower bound method, : with applications to direct product theorems and time-space tradeoffs

We give a new version of the adversary method for proving lower bounds on quantum query algorithms. The new method is based on analyzing the eigenspace structure of the problem at hand. We use it to prove a new and optimal strong direct product theorem for 2-sided error quantum algorithms computing k independent instances of a symmetric Boolean function: if the algorithm uses significantly less than k times the number of queries needed for one instance of the function, then its success probability is exponentially small in k. We also use the polynomial method to prove a direct product theorem for 1-sided error algorithms for k threshold functions with a stronger bound on the success probability. Finally, we present a quantum algorithm for evaluating solutions to systems of linear inequalities, and use our direct product theorems to show that the time-space tradeoff of this algorithm is close to optimal.

[1]  Scott Aaronson,et al.  Quantum lower bounds for the collision and the element distinctness problems , 2004, JACM.

[2]  A. Razborov Quantum communication complexity of symmetric predicates , 2002, quant-ph/0204025.

[3]  Ronald de Wolf,et al.  Bounds for small-error and zero-error quantum algorithms , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[4]  Hartmut Klauck,et al.  Quantum and Classical Strong Direct Product Theorems and Optimal Time-Space Tradeoffs , 2007, SIAM J. Comput..

[5]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[6]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[7]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[8]  Jan Neerbek,et al.  Quantum Complexities of Ordered Searching, Sorting, and Element Distinctness , 2002, Algorithmica.

[9]  Frédéric Magniez,et al.  Quantum Complexity of Testing Group Commutativity , 2005, Algorithmica.

[10]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[11]  Ronen Shaltiel Towards proving strong direct product theorems , 2003, computational complexity.

[12]  T. J. Rivlin Chebyshev polynomials : from approximation theory to algebra and number theory , 1990 .

[13]  Ramamohan Paturi,et al.  On the degree of polynomials that approximate symmetric Boolean functions (preliminary version) , 1992, STOC '92.

[14]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[15]  Andris Ambainis Polynomial degree vs. quantum query complexity , 2006, J. Comput. Syst. Sci..

[16]  Ronald de Wolf,et al.  Quantum Search on Bounded-Error Inputs , 2003, ICALP.

[17]  Harry Buhrman,et al.  Quantum verification of matrix products , 2004, SODA '06.

[18]  Andris Ambainis,et al.  Any AND-OR Formula of Size N can be Evaluated in time N^{1/2 + o(1)} on a Quantum Computer , 2010, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[19]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[20]  Shengyu Zhang,et al.  On the power of Ambainis lower bounds , 2005, Theor. Comput. Sci..

[21]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[22]  M. Sipser,et al.  Limit on the Speed of Quantum Computation in Determining Parity , 1998, quant-ph/9802045.

[23]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[24]  Michael E. Saks,et al.  Quantum query complexity and semi-definite programming , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[25]  Troy Lee,et al.  Negative weights make adversaries stronger , 2007, STOC '07.

[26]  T. J. Rivlin,et al.  The growth of polynomials bounded at equally spaced points , 1992 .

[27]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[28]  Robert Spalek The Multiplicative Quantum Adversary , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[29]  Scott Aaronson,et al.  Limitations of quantum advice and one-way communication , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[30]  Andris Ambainis,et al.  Quantum lower bounds by quantum arguments , 2000, STOC '00.

[31]  Hartmut Klauck,et al.  Quantum and classical strong direct product theorems and optimal time-space tradeoffs , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[32]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 2005, computational complexity.

[33]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[34]  Frédéric Magniez,et al.  Quantum algorithms for the triangle problem , 2005, SODA '05.

[35]  Edward Farhi,et al.  A Quantum Algorithm for the Hamiltonian NAND Tree , 2008, Theory Comput..

[36]  Frédéric Magniez,et al.  Lower bounds for randomized and quantum query complexity using Kolmogorov arguments , 2004 .

[37]  Lance Fortnow,et al.  Complexity limitations on quantum computation , 1999, J. Comput. Syst. Sci..

[38]  Daniel R. Simon On the Power of Quantum Computation , 1997, SIAM J. Comput..

[39]  Mario Szegedy,et al.  All Quantum Adversary Methods are Equivalent , 2006, Theory Comput..

[40]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .