Voronoi cells in random split trees
暂无分享,去创建一个
Markus Heydenreich | Alexander Drewitz | C'ecile Mailler | Alexander Drewitz | Cécile Mailler | M. Heydenreich
[1] Yuval Peres,et al. Competing first passage percolation on random regular graphs , 2011, Random Struct. Algorithms.
[2] R. Durrett. Probability: Theory and Examples , 1993 .
[3] Remco van der Hofstad,et al. The winner takes it all , 2013, 1306.6467.
[4] Luc Devroye. Universal Limit Laws for Depths in Random Trees , 1998, SIAM J. Comput..
[5] J. Marckert,et al. Measure-valued Pólya urn processes , 2017 .
[6] S. Janson,et al. Fringe trees, Crump-Mode-Jagers branching processes and $m$-ary search trees , 2016, 1601.03691.
[7] Omer Angel,et al. Voronoi tessellations in the CRT and continuum random maps of finite excess , 2018, SODA.
[8] B. Gnedenko,et al. Limit Distributions for Sums of Independent Random Variables , 1955 .
[9] M. Drmota,et al. The Profile of Binary Search Trees , 2001 .
[10] Bernhard Gittenberger,et al. On the profile of random trees , 1997, Random Struct. Algorithms.
[11] Zsolt Katona. Width of a scale-free tree , 2005 .
[13] Svante Janson,et al. Random Recursive Trees and Preferential Attachment Trees are Random Split Trees , 2017, Combinatorics, Probability and Computing.
[14] Remco van der Hofstad,et al. Fixed speed competition on the configuration model with infinite variance degrees: unequal speeds , 2014, 1408.0475.
[15] G. Chapuy. On tessellations of random maps and the tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_g$$\end{document}-recurren , 2016, Probability Theory and Related Fields.