Voronoi cells in random split trees

We study the sizes of the Voronoi cells of k uniformly chosen vertices in a random split tree of size n. We prove that, for n large, the largest of these k Voronoi cells contains most of the vertices, while the sizes of the remaining ones are essentially all of order n exp(−const √ log n). This discrepancy persists if we modify the definition of the Voronoi cells by (a) introducing random edge lengths (with suitable moment assumptions), and (b) assigning different “influence” parameters (called “speeds” in the paper) to each of the k vertices. Our findings are in contrast to corresponding results on random uniform trees and on the continuum random tree, where it is known that the vector of the relative sizes of the k Voronoi cells is asymptotically uniformly distributed on the (k − 1)-dimensional simplex.

[1]  Yuval Peres,et al.  Competing first passage percolation on random regular graphs , 2011, Random Struct. Algorithms.

[2]  R. Durrett Probability: Theory and Examples , 1993 .

[3]  Remco van der Hofstad,et al.  The winner takes it all , 2013, 1306.6467.

[4]  Luc Devroye Universal Limit Laws for Depths in Random Trees , 1998, SIAM J. Comput..

[5]  J. Marckert,et al.  Measure-valued Pólya urn processes , 2017 .

[6]  S. Janson,et al.  Fringe trees, Crump-Mode-Jagers branching processes and $m$-ary search trees , 2016, 1601.03691.

[7]  Omer Angel,et al.  Voronoi tessellations in the CRT and continuum random maps of finite excess , 2018, SODA.

[8]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[9]  M. Drmota,et al.  The Profile of Binary Search Trees , 2001 .

[10]  Bernhard Gittenberger,et al.  On the profile of random trees , 1997, Random Struct. Algorithms.

[11]  Zsolt Katona Width of a scale-free tree , 2005 .

[13]  Svante Janson,et al.  Random Recursive Trees and Preferential Attachment Trees are Random Split Trees , 2017, Combinatorics, Probability and Computing.

[14]  Remco van der Hofstad,et al.  Fixed speed competition on the configuration model with infinite variance degrees: unequal speeds , 2014, 1408.0475.

[15]  G. Chapuy On tessellations of random maps and the tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_g$$\end{document}-recurren , 2016, Probability Theory and Related Fields.