Using neural networks for forecasting volatility of S&P 500 Index futures prices

[1]  Guoqiang Peter Zhang,et al.  An investigation of neural networks for linear time-series forecasting , 2001, Comput. Oper. Res..

[2]  G. Meissner,et al.  Capturing the volatility smile of options on high-tech stocks—A combined GARCH-neural network approach , 2001 .

[3]  Guoqiang Peter Zhang,et al.  An investigation of model selection criteria for neural network time series forecasting , 2001, Eur. J. Oper. Res..

[4]  M. Qi Predicting US recessions with leading indicators via neural network models , 2001 .

[5]  E. Dockner,et al.  Forecasting Time-dependent Conditional Densities: A Semi-non- parametric Neural Network Approach , 2000 .

[6]  N. Burgess,et al.  Modelling market volatilities: the neural network perspective , 1997 .

[7]  R. Donaldson,et al.  An artificial neural network-GARCH model for international stock return volatility , 1997 .

[8]  Ralph Neuneier,et al.  Experiments in predicting the German stock index DAX with density estimating neural networks , 1996, IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[9]  John Kean Neural nets and stocks: training a predictive system , 1993 .

[10]  Pamela K. Coats,et al.  Recognizing Financial Distress Patterns Using a Neural Network Tool , 1993 .

[11]  Delvin D. Hawley,et al.  Artificial Neural Systems: A New Tool for Financial Decision-Making , 1990 .

[12]  James L. McClelland,et al.  James L. McClelland, David Rumelhart and the PDP Research Group, Parallel distributed processing: explorations in the microstructure of cognition . Vol. 1. Foundations . Vol. 2. Psychological and biological models . Cambridge MA: M.I.T. Press, 1987. , 1989, Journal of Child Language.

[13]  G. Barone-Adesi,et al.  Efficient Analytic Approximation of American Option Values , 1987 .

[14]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[15]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .