On Negations in Boolean Networks
暂无分享,去创建一个
[1] Vaughan R. Pratt. The Power of Negative Thinking in Multiplying Boolean Matrices , 1975, SIAM J. Comput..
[2] Ingo Wegener,et al. A new lower bound on the monotone network complexity of Boolean sums , 1980, Acta Informatica.
[3] Nicholas Pippenger,et al. On Another Boolean Matrix , 1980, Theor. Comput. Sci..
[4] John E. Savage,et al. Models of computation - exploring the power of computing , 1998 .
[5] Wolfgang J. Paul. A 2.5 n-Lower Bound on the Combinational Complexity of Boolean Functions , 1977, SIAM J. Comput..
[6] A. Wigderson. The Fusion Method for Lower Bounds in Circuit Complexity , 2003 .
[7] Edmund A. Lamagna,et al. The Complexity of Monotone Networks for Certain Bilinear Forms, Routing Problems, Sorting, and Merging , 1979, IEEE Transactions on Computers.
[8] Mike Paterson,et al. Complexity of Monotone Networks for Boolean Matrix Product , 1974, Theor. Comput. Sci..
[9] Leslie G. Valiant,et al. Graph-Theoretic Properties in computational Complexity , 1976, J. Comput. Syst. Sci..
[10] W. G. Brown. On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.
[11] Tetsuro Nishino,et al. On the Complexity of Negation-Limited Boolean Networks , 1998, SIAM J. Comput..
[12] Paul E. Dunne,et al. The Complexity of Boolean Networks , 1988 .
[13] Leslie G. Valiant,et al. Shifting Graphs and Their Applications , 1976, J. ACM.
[14] Éva Tardos,et al. The gap between monotone and non-monotone circuit complexity is exponential , 1988, Comb..
[15] Peter Clote,et al. Boolean Functions and Computation Models , 2002, Texts in Theoretical Computer Science. An EATCS Series.
[16] Claude E. Shannon,et al. The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..
[17] Norbert Blum,et al. An Omega(n-4/3) Lower Bound on the Monotone Network Complexity of the n-th Degree Convolution , 1985, Theor. Comput. Sci..
[18] A. A. Markov. On the Inversion Complexity of a System of Functions , 1958, JACM.
[19] Alexander A. Razborov,et al. On the method of approximations , 1989, STOC '89.
[20] Ingo Wegener,et al. The complexity of Boolean functions , 1987 .
[21] Mauricio Karchmer,et al. On proving lower bounds for circuit size , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.
[22] Leslie G. Valiant. Negation is Powerless for Boolean Slice Functions , 1986, SIAM J. Comput..
[23] A. Razborov. Lower bounds on monotone complexity of the logical permanent , 1985 .
[24] Uri Zwick. A 4n Lower Bound on the Combinational Complexity of Certain Symmetric Boolean Functions over the Basis of Unate Dyadic Boolean Functions , 1991, SIAM J. Comput..
[25] Ingo Wegener,et al. Switching Functions Whose Monotone Complexity is Nearly Quadratic , 1979, Theor. Comput. Sci..
[26] Jürgen Tiekenheinrich. A 4n-Lower Bound on the Monotone Network Complexity of a One-Output Boolean Function , 1984, Inf. Process. Lett..
[27] Armin Haken,et al. Counting bottlenecks to show monotone P/spl ne/NP , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.
[28] Kurt Mehlhorn,et al. Some remarks on Boolean sums , 1979, Acta Informatica.
[29] Ran Raz,et al. Higher lower bounds on monotone size , 2000, STOC '00.
[30] Larry J. Stockmeyer. On the combinational complexity of certain symmetric Boolean functions , 2005, Mathematical systems theory.
[31] Akira Maruoka,et al. A Superpolynomial Lower Bound for a Circuit Computing the Clique Function with at most (1/6)log log n Negation Gates , 2005, SIAM J. Comput..
[32] Noga Alon,et al. The monotone circuit complexity of boolean functions , 1987, Comb..
[33] Kurt Mehlhorn,et al. Monotone switching circuits and boolean matrix product , 2005, Computing.
[34] A Pettorossi. Automata theory and formal languages , 2008 .
[35] Chuan Yi Tang,et al. A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..
[36] Alexander A. Razborov,et al. Natural Proofs , 1997, J. Comput. Syst. Sci..
[37] Michael J. Fischer. Hauptvortrag: The complexity of negation-limited networks - A brief survey , 1975, Automata Theory and Formal Languages.
[38] Akira Maruoka,et al. The Potential of the Approximation Method , 2004, SIAM J. Comput..
[39] Claus-Peter Schnorr. Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen , 2005, Computing.
[40] Christer Berg,et al. Symmetric approximation arguments for monotone lower bounds without sunflowers , 1999, computational complexity.
[41] Norbert Blum. A Boolean Function Requiring 3n Network Size , 1984, Theor. Comput. Sci..
[42] Ingo Wegener. Boolean Functions Whose Monotone Complexity is of Size n2/log n , 1981, Theoretical Computer Science.
[43] V. Sós,et al. On a problem of K. Zarankiewicz , 1954 .
[44] V. Sós,et al. Combinatorics, Paul Erdős is eighty , 1993 .
[45] Shi-Chun Tsai,et al. On the bottleneck counting argument , 2000, Theor. Comput. Sci..
[46] Jürgen Weiss,et al. An n^3/2 Lower Bound on the Monotone Network Complexity of the Boolean Convolution , 1984, Inf. Control..
[47] Stasys Jukna. Combinatorics of Monotone Computations , 1998, Comb..
[48] Timothy Y. Chow. Almost-Natural Proofs , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.