On Negations in Boolean Networks

Although it is well known by a counting argument that relative to the full basis most Boolean functions need exponentially many operations, for explicit Boolean functions only linear lower bounds with small constant factors are known. For monotone networks (i.e., networks without negations) exponential lower bounds for explicit monotone Boolean functions have been proved. We describe the state of the art and give some arguments why techniques developed for the proof of lower bounds for monotone networks cannot easily be extended to Boolean networks with negations.

[1]  Vaughan R. Pratt The Power of Negative Thinking in Multiplying Boolean Matrices , 1975, SIAM J. Comput..

[2]  Ingo Wegener,et al.  A new lower bound on the monotone network complexity of Boolean sums , 1980, Acta Informatica.

[3]  Nicholas Pippenger,et al.  On Another Boolean Matrix , 1980, Theor. Comput. Sci..

[4]  John E. Savage,et al.  Models of computation - exploring the power of computing , 1998 .

[5]  Wolfgang J. Paul A 2.5 n-Lower Bound on the Combinational Complexity of Boolean Functions , 1977, SIAM J. Comput..

[6]  A. Wigderson The Fusion Method for Lower Bounds in Circuit Complexity , 2003 .

[7]  Edmund A. Lamagna,et al.  The Complexity of Monotone Networks for Certain Bilinear Forms, Routing Problems, Sorting, and Merging , 1979, IEEE Transactions on Computers.

[8]  Mike Paterson,et al.  Complexity of Monotone Networks for Boolean Matrix Product , 1974, Theor. Comput. Sci..

[9]  Leslie G. Valiant,et al.  Graph-Theoretic Properties in computational Complexity , 1976, J. Comput. Syst. Sci..

[10]  W. G. Brown On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.

[11]  Tetsuro Nishino,et al.  On the Complexity of Negation-Limited Boolean Networks , 1998, SIAM J. Comput..

[12]  Paul E. Dunne,et al.  The Complexity of Boolean Networks , 1988 .

[13]  Leslie G. Valiant,et al.  Shifting Graphs and Their Applications , 1976, J. ACM.

[14]  Éva Tardos,et al.  The gap between monotone and non-monotone circuit complexity is exponential , 1988, Comb..

[15]  Peter Clote,et al.  Boolean Functions and Computation Models , 2002, Texts in Theoretical Computer Science. An EATCS Series.

[16]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[17]  Norbert Blum,et al.  An Omega(n-4/3) Lower Bound on the Monotone Network Complexity of the n-th Degree Convolution , 1985, Theor. Comput. Sci..

[18]  A. A. Markov On the Inversion Complexity of a System of Functions , 1958, JACM.

[19]  Alexander A. Razborov,et al.  On the method of approximations , 1989, STOC '89.

[20]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[21]  Mauricio Karchmer,et al.  On proving lower bounds for circuit size , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[22]  Leslie G. Valiant Negation is Powerless for Boolean Slice Functions , 1986, SIAM J. Comput..

[23]  A. Razborov Lower bounds on monotone complexity of the logical permanent , 1985 .

[24]  Uri Zwick A 4n Lower Bound on the Combinational Complexity of Certain Symmetric Boolean Functions over the Basis of Unate Dyadic Boolean Functions , 1991, SIAM J. Comput..

[25]  Ingo Wegener,et al.  Switching Functions Whose Monotone Complexity is Nearly Quadratic , 1979, Theor. Comput. Sci..

[26]  Jürgen Tiekenheinrich A 4n-Lower Bound on the Monotone Network Complexity of a One-Output Boolean Function , 1984, Inf. Process. Lett..

[27]  Armin Haken,et al.  Counting bottlenecks to show monotone P/spl ne/NP , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[28]  Kurt Mehlhorn,et al.  Some remarks on Boolean sums , 1979, Acta Informatica.

[29]  Ran Raz,et al.  Higher lower bounds on monotone size , 2000, STOC '00.

[30]  Larry J. Stockmeyer On the combinational complexity of certain symmetric Boolean functions , 2005, Mathematical systems theory.

[31]  Akira Maruoka,et al.  A Superpolynomial Lower Bound for a Circuit Computing the Clique Function with at most (1/6)log log n Negation Gates , 2005, SIAM J. Comput..

[32]  Noga Alon,et al.  The monotone circuit complexity of boolean functions , 1987, Comb..

[33]  Kurt Mehlhorn,et al.  Monotone switching circuits and boolean matrix product , 2005, Computing.

[34]  A Pettorossi Automata theory and formal languages , 2008 .

[35]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[36]  Alexander A. Razborov,et al.  Natural Proofs , 1997, J. Comput. Syst. Sci..

[37]  Michael J. Fischer Hauptvortrag: The complexity of negation-limited networks - A brief survey , 1975, Automata Theory and Formal Languages.

[38]  Akira Maruoka,et al.  The Potential of the Approximation Method , 2004, SIAM J. Comput..

[39]  Claus-Peter Schnorr Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen , 2005, Computing.

[40]  Christer Berg,et al.  Symmetric approximation arguments for monotone lower bounds without sunflowers , 1999, computational complexity.

[41]  Norbert Blum A Boolean Function Requiring 3n Network Size , 1984, Theor. Comput. Sci..

[42]  Ingo Wegener Boolean Functions Whose Monotone Complexity is of Size n2/log n , 1981, Theoretical Computer Science.

[43]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[44]  V. Sós,et al.  Combinatorics, Paul Erdős is eighty , 1993 .

[45]  Shi-Chun Tsai,et al.  On the bottleneck counting argument , 2000, Theor. Comput. Sci..

[46]  Jürgen Weiss,et al.  An n^3/2 Lower Bound on the Monotone Network Complexity of the Boolean Convolution , 1984, Inf. Control..

[47]  Stasys Jukna Combinatorics of Monotone Computations , 1998, Comb..

[48]  Timothy Y. Chow Almost-Natural Proofs , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.