Fast and Reliable Missing Data Contingency Analysis with Predicate-Constraints
暂无分享,去创建一个
Sanjay Krishnan | Aaron J. Elmore | Michael J. Franklin | Xi Liang | Zechao Shang | S. Krishnan | M. Franklin | Xi Liang | Zechao Shang
[1] Yannis Papakonstantinou,et al. Efficient Approximate Query Answering over Sensor Data with Deterministic Error Guarantees , 2017, ArXiv.
[2] Srikanth Kandula,et al. Quickr: Lazily Approximating Complex AdHoc Queries in BigData Clusters , 2016, SIGMOD Conference.
[3] Dan Suciu,et al. Pessimistic Cardinality Estimation: Tighter Upper Bounds for Intermediate Join Cardinalities , 2019, SIGMOD Conference.
[4] Helen J. Wang,et al. Online aggregation , 1997, SIGMOD '97.
[5] Ihab F. Ilyas,et al. Data Cleaning: Overview and Emerging Challenges , 2016, SIGMOD Conference.
[6] Boris Glavic,et al. Analyzing Uncertain Tabular Data , 2019, Information Quality in Information Fusion and Decision Making.
[7] E IoannidisYannis,et al. Improved histograms for selectivity estimation of range predicates , 1996 .
[8] Nikolaj Bjørner,et al. Z3: An Efficient SMT Solver , 2008, TACAS.
[9] Ameet Talwalkar,et al. Knowing when you're wrong: building fast and reliable approximate query processing systems , 2014, SIGMOD Conference.
[10] Ehud Friedgut,et al. Hypergraphs, Entropy, and Inequalities , 2004, Am. Math. Mon..
[11] Jeffrey F. Naughton,et al. Exploiting Data Partitioning To Provide Approximate Results , 2018, BeyondMR@SIGMOD.
[12] Dan Suciu,et al. Reverse data management , 2011, Proc. VLDB Endow..
[13] Qing Zhang,et al. Aggregate Query Answering on Anonymized Tables , 2007, 2007 IEEE 23rd International Conference on Data Engineering.
[14] T. S. Jayram,et al. Efficient allocation algorithms for OLAP over imprecise data , 2006, VLDB.
[15] Dawn Xiaodong Song,et al. Towards Practical Differential Privacy for SQL Queries , 2017, Proc. VLDB Endow..
[16] Peter J. Haas,et al. Improved histograms for selectivity estimation of range predicates , 1996, SIGMOD '96.
[17] Daniel Deutch,et al. Caravan: Provisioning for What-If Analysis , 2013, CIDR.
[18] Sanjeev Khanna,et al. Why and Where: A Characterization of Data Provenance , 2001, ICDT.
[19] Dan Suciu,et al. Tiresias: the database oracle for how-to queries , 2012, SIGMOD Conference.
[20] Jeffrey F. Naughton,et al. m-tables: Representing Missing Data , 2017, ICDT.
[21] Tim Kraska,et al. Stale View Cleaning: Getting Fresh Answers from Stale Materialized Views , 2015, Proc. VLDB Endow..
[22] Tomasz Imielinski,et al. Incomplete Information in Relational Databases , 1984, JACM.
[23] Jennifer Widom,et al. Adaptive precision setting for cached approximate values , 2001, SIGMOD '01.
[24] Jignesh M. Patel,et al. DAQ: A New Paradigm for Approximate Query Processing , 2015, Proc. VLDB Endow..
[25] Tim Kraska,et al. SampleClean: Fast and Reliable Analytics on Dirty Data , 2015, IEEE Data Eng. Bull..
[26] Tim Kraska,et al. Northstar: An Interactive Data Science System , 2018, Proc. VLDB Endow..