Thermodynamic study of solar photovoltaic energy conversion: An overview

The thermodynamic basis of energy conversion systems is being utilized to carry out performance assessments and feasibility studies on photovoltaic (PV) systems in order to improve the design and efficiency of the system. The thermodynamic process of converting solar radiation directly into electrical energy, i.e. solar PV energy conversion, has been established, which includes electrical power generation, optical/thermal losses and electrical losses. In this paper, the thermodynamic modeling based on energy, endoreversible, entropy and exergy models of solar PV energy conversion system has been presented using the first and second law of thermodynamic, with an updated literature survey. The energetic and exergetic efficiencies of PV system have been evaluated and the reported theoretical upper limit efficiency of PV system using different thermodynamic models have been presented.

[1]  Rahul Rawat,et al.  Review of Maximum‐Power‐Point Tracking Techniques for Solar‐Photovoltaic Systems , 2013 .

[2]  Ibrahim Dincer,et al.  How much exergy one can obtain from incident solar radiation , 2009 .

[3]  M. Rosen,et al.  The upper limit to solar energy conversion , 2000, Collection of Technical Papers. 35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC) (Cat. No.00CH37022).

[4]  Elumalai Natarajan,et al.  Entropy Generation Analysis of 10Wp Photovoltaic Thermal Hybrid System , 2015 .

[5]  S. K. Tyagi,et al.  Energy and exergy analysis of typical renewable energy systems , 2014 .

[6]  S. K. Tyagi,et al.  Exergetic analysis and parametric study of multi-crystalline solar photovoltaic system at a typical climatic zone , 2013, Clean Technologies and Environmental Policy.

[7]  Alexis De Vos,et al.  The endoreversible theory of solar energy conversion : a tutorial , 1993 .

[8]  Viorel Badescu,et al.  Statistical thermodynamics foundation for photovoltaic and photothermal conversion. II. Application to photovoltaic conversion , 1995 .

[9]  Clara Good,et al.  Environmental impact assessments of hybrid photovoltaic–thermal (PV/T) systems – A review , 2016 .

[10]  Photovoltaics in a single dimension , 1987 .

[11]  Ibrahim Dincer,et al.  Thermodynamic assessment of photovoltaic systems , 2009 .

[12]  Sivasankari Sundaram,et al.  Performance evaluation and validation of 5 MWp grid connected solar photovoltaic plant in South India , 2015 .

[13]  Ercan Izgi,et al.  Exergoeconomic analysis of a solar photovoltaic system in İstanbul, Turkey , 2013, Turkish Journal of Electrical Engineering and Computer Sciences.

[14]  Mohd. Yusof Othman,et al.  A review on photovoltaic thermal collectors , 2009 .

[15]  Akash Kumar Shukla,et al.  Exergetic assessment of BIPV module using parametric and photonic energy methods: A review , 2016 .

[16]  M. Farzaneh-Gord,et al.  The first and second law analysis of a grid connected photovoltaic plant equipped with a compressed air energy storage unit , 2015 .

[17]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[18]  A. Bejan Unification of Three Different Theories Concerning the Ideal Conversion of Enclosed Radiation , 1987 .

[19]  Tom Markvart,et al.  From steam engine to solar cells: can thermodynamics guide the development of future generations of photovoltaics? , 2016 .

[20]  Christopher J. Koroneos,et al.  Exergy analysis of renewable energy sources , 2003 .

[21]  Philip Rosen,et al.  Entropy of Radiation , 1954 .

[22]  R. Petela Engineering Thermodynamics of Thermal Radiation: for Solar Power Utilization , 2010 .

[23]  Niccolò Aste,et al.  Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector , 2015 .

[24]  Arvind Tiwari,et al.  Modeling and parameter optimization of hybrid single channel photovoltaic thermal module using genetic algorithms , 2015 .

[25]  P. Landsberg,et al.  The thermodynamics of the conversion of radiation energy for photovoltaics , 1989 .

[26]  Said Farahat,et al.  Performance evaluation of a solar photovoltaic thermal air collector using energy and exergy analysis , 2011 .

[27]  S. C. Kaushik,et al.  A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system , 2016 .

[28]  P. Würfel,et al.  The chemical potential of radiation , 1982 .

[29]  V. Aimez,et al.  Approaching the Shockley-Queisser limit: General assessment of the main limiting mechanisms in photovoltaic cells , 2015 .

[30]  M. Ozturk,et al.  Thermodynamic and life cycle assessment of flat–plate collector, photovoltaic system and photovoltaic thermal collector , 2012 .

[31]  P. Würfel,et al.  Thermodynamic limitations to solar energy conversion , 2002 .

[32]  Ibrahim Dincer,et al.  A novel approach for estimation of photovoltaic exergy efficiency , 2012 .

[33]  El Banany Elhadj Sidi Cheikh,et al.  Outdoor performance analysis of a monocrystalline photovoltaic module: Irradiance and temperature effect on exergetic efficiency , 2015 .

[34]  Mikhail Sorin,et al.  Analysis of photovoltaic (PV) and photovoltaic/thermal (PV/T) systems using the exergy method , 2013 .

[35]  Maximum performance of solar heat engines , 1986 .

[36]  N. J. Ekins-Daukes,et al.  Routes to high efficiency photovoltaic power conversion , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[37]  Andrés Agudelo,et al.  Thermal radiation and the second law , 2010 .

[38]  J. Ketterson,et al.  Magnetic response of aperiodic wire networks based on Fibonacci distortions of square antidot lattices , 2015 .

[39]  Ibrahim Dincer,et al.  Role of exergy in increasing efficiency and sustainability and reducing environmental impact , 2008 .

[40]  G. Lesins On the relationship between radiative entropy and temperature distributions , 1990 .

[41]  Arif Hepbasli,et al.  A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future , 2008 .

[42]  Viorel Badescu,et al.  Statistical thermodynamic foundation for photovoltaic and photothermal conversion. I. Theory , 1995 .

[43]  Rajit Gadh,et al.  Optimization of single channel glazed photovoltaic thermal (PVT) array using Evolutionary Algorithm (EA) and carbon credit earned by the optimized array , 2015 .

[44]  Ibrahim Dincer,et al.  Development and analysis of an integrated photovoltaic system for hydrogen and methanol production , 2015 .

[45]  J. Antonanzas,et al.  Towards the optimization of convective losses in photovoltaic–thermal panels , 2015 .

[46]  A. D. Vos,et al.  Thermodynamics of photochemical solar energy conversion , 1995 .

[47]  S. Jeter Maximum conversion efficiency for the utilization of direct solar radiation , 1981 .

[48]  A. D. Vos Is a solar cell an endoreversible engine , 1991 .

[49]  I. Dincer,et al.  Solar exergy maps for photovoltaic/thermal systems , 2014 .

[50]  Jürgen H. Werner,et al.  Thermodynamic efficiency limits for semiconductor solar cells with carrier multiplication , 1996 .

[51]  K. Sudhakar,et al.  Energy and exergy analysis of 36 W solar photovoltaic module , 2014 .

[52]  R. Petela Exergy of Heat Radiation , 1964 .

[53]  Jibran R. Khan,et al.  Solar power technologies for sustainable electricity generation – A review , 2016 .

[54]  J. F. Osterle,et al.  The Second Law Efficiency of Solar Energy Conversion , 1984 .

[55]  Ankita Gaur,et al.  Exergoeconomic and Enviroeconomic Analysis of Photovoltaic Modules of Different Solar Cells , 2014 .

[56]  Selçuk Bilgen,et al.  Exergy for environment, ecology and sustainable development , 2015 .

[57]  P. Landsberg,et al.  Thermodynamics of the conversion of diluted radiation , 1979 .

[58]  Deepali Kamthania,et al.  Photovoltaic thermal air collectors: A review , 2014 .

[59]  V. Bădescu The theoretical maximum efficiency of solar converters with and without concentration , 1989 .

[60]  Reply to ”Comment on ‘Recent progress in thermodynamics of radiation—Exergy of radiation, effective temperature of photon and entropy constant of photon’” , 2010 .

[61]  Christopher J. Koroneos,et al.  Exergetic life cycle assessment of a grid-connected, polycrystalline silicon photovoltaic system , 2014, The International Journal of Life Cycle Assessment.

[62]  Stanislaw Sieniutycz,et al.  Thermodynamics of energy conversion and transport , 2000 .

[63]  A. D. Vos,et al.  A comparison of some efficiency factors in photovoltaics , 1991 .

[64]  Stijn Bruers,et al.  Exergy: its potential and limitations in environmental science and technology. , 2008, Environmental science & technology.

[65]  Antonio Luque,et al.  Entropy production in photovoltaic conversion , 1997 .

[66]  Faramarz Sarhaddi,et al.  Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses , 2015 .

[67]  D. Rusirawan Energetic modelling of photovoltaic modules in grid-connected systems , 2012 .

[68]  I. Dincer,et al.  A holistic approach to thermodynamic analysis of photo-thermo-electrical processes in a photovoltaic cell , 2016 .

[69]  A. Ore,et al.  Entropy of Radiation , 1955 .

[70]  S. C. Kaushik,et al.  Energetic and exergetic performance analysis of CdS/CdTe based photovoltaic technology in real operating conditions of composite climate , 2016 .

[71]  Viorel Badescu,et al.  Unified upper bound for photothermal and photovoltaic conversion efficiency , 2008 .

[72]  W. Press,et al.  Theoretical maximum for energy from direct and diffuse sunlight , 1976, Nature.

[73]  S. C. Kaushik,et al.  Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system , 2016 .

[74]  P. T. Landsberg,et al.  Thermodynamic constraints, effective temperatures and solar cells , 1976 .

[75]  Mei Gong,et al.  Life Cycle Exergy Analysis of Solar Energy Systems , 2014 .

[76]  Ibrahim Dincer,et al.  Thermodynamic analysis of solar photovoltaic cell systems , 2007 .

[77]  A. D. Vos,et al.  Detailed balance limit of the efficiency of tandem solar cells , 1980 .

[78]  Akio Suzuki,et al.  General theory of exergy-balance analysis and application to solar collectors , 1988 .

[79]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[80]  Noam Lior,et al.  Energy, exergy, and Second Law performance criteria , 2007 .

[81]  Joshua M. Pearce,et al.  Optimizing limited solar roof access by exergy analysis of solar thermal, photovoltaic, and hybrid photovoltaic thermal systems , 2014 .

[82]  Ibrahim Dincer,et al.  Performance analysis of photovoltaic systems: A review , 2009 .

[83]  G N Lewis,et al.  The Entropy of Radiation. , 1927, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Andreas K. Athienitis,et al.  A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems , 2016 .

[85]  R. Petela Exergy of undiluted thermal radiation , 2003 .

[86]  M. Rubin Optimal configuration of a class of irreversible heat engines. II , 1979 .

[87]  P. Würfel,et al.  Theoretical limits of thermophotovoltaic solar energy conversion , 2003 .

[88]  Armando C. Oliveira,et al.  Modelling and analysis of photovoltaic/thermal collectors – influence of PV cell location and area , 2015 .

[89]  Rahman Saidur,et al.  Exergy analysis of solar energy applications , 2012 .

[90]  I. Dincer The role of exergy in energy policy making , 2002 .

[91]  D. C. Spanner,et al.  Introduction to Thermodynamics , 1964 .

[92]  Erdem Cuce,et al.  Improving thermodynamic performance parameters of silicon photovoltaic cells via air cooling , 2014 .

[93]  S. K. Tyagi,et al.  Recent advances in solar photovoltaic systems for emerging trends and advanced applications , 2016 .

[94]  J. E. Parrott,et al.  Theoretical upper limit to the conversion efficiency of solar energy , 1978 .

[95]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[96]  A. D. Vos,et al.  Endoreversible thermodynamics of solar energy conversion , 1992 .

[97]  Said Farahat,et al.  Exergetic Optimization of a Solar Photovoltaic Array , 2009 .

[98]  Helmut Müser Thermodynamische Behandlung von Elektronenprozessen in Halbleiter-Randschichten , 1957 .

[99]  Tom Markvart,et al.  Thermodynamics of losses in photovoltaic conversion , 2007 .

[100]  Peng Hu,et al.  Recent progress in thermodynamics of radiation—exergy of radiation, effective temperature of photon and entropy constant of photon , 2008 .

[101]  Paul J. A. Kenis,et al.  Comprehensive energy analysis of a photovoltaic thermal water electrolyzer , 2016 .

[102]  A. De Vos,et al.  On some thermodynamic aspects of photovoltaic solar energy conversion , 1995 .

[103]  S. Iniyan,et al.  Flat plate solar photovoltaic–thermal (PV/T) systems : A reference guide , 2015 .

[104]  Werner,et al.  Novel optimization principles and efficiency limits for semiconductor solar cells. , 1994, Physical review letters.

[105]  A. D. Vos,et al.  On the upper limit of the energy conversion efficiency in tandem solar cells , 1981 .

[106]  Manju Khare,et al.  Experimental Exergetic Performance Evaluation of Solar PV Module , 2015 .

[107]  Guodong Liu,et al.  New quarternary half metallic material CoFeMnSi , 2009 .