Computing global shape measures

Global shape measures are a convenient way to describe regions. They are generally simple and efficient to extract, and provide an easy means for high level tasks such as classification as well as helping direct low-level computer vision processes such as segmentation. In this chapter a large selection of global shape measures (some from the standard literature as well as other newer methods) are described and demonstrated.

[1]  Paul L. Rosin Representing curves at their natural scales , 1992, Pattern Recognit..

[2]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[3]  Paul L. Rosin Measuring sigmoidality , 2004, Pattern Recognit..

[4]  Paul L. Rosin Measuring rectangularity , 1999, Machine Vision and Applications.

[5]  Jan Flusser,et al.  Pattern recognition by affine moment invariants , 1993, Pattern Recognit..

[6]  Paul L. Rosin Further Five-Point Fit Ellipse Fitting , 1999, Graph. Model. Image Process..

[7]  S. Maitra Moment invariants , 1979, Proceedings of the IEEE.

[8]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[9]  Giovanni Marola,et al.  On the Detection of the Axes of Symmetry of Symmetric and Almost Symmetric Planar Images , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  N. Page,et al.  Selection of Descriptors for Particle Shape Characterization , 2003 .

[11]  Robert M. Haralick,et al.  A Measure for Circularity of Digital Figures , 1974, IEEE Trans. Syst. Man Cybern..

[12]  Paul L. Rosin Non-Parametric Multiscale Curve Smoothing , 1994, Int. J. Pattern Recognit. Artif. Intell..

[13]  Theodosios Pavlidis,et al.  A review of algorithms for shape analysis , 1978 .

[14]  Paul L. Rosin,et al.  A new convexity measure for polygons , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Franco P. Preparata,et al.  Computational Geometry , 1985, Texts and Monographs in Computer Science.

[16]  Benjamin B. Kimia,et al.  On the Local Form and Transitions of Symmetry Sets, Medial Axes, and Shocks , 2004, International Journal of Computer Vision.

[17]  Paul L. Rosin,et al.  Comparison of the effectiveness of alternative feature sets in shape retrieval of multicomponent images , 2001, IS&T/SPIE Electronic Imaging.

[18]  Harry G. Barrow,et al.  Retrospective on "Interpreting Line Drawings as Three-Dimensional Surfaces" , 1993, Artif. Intell..

[19]  Yacov Hel-Or,et al.  Characterization of right-handed and left-handed shapes , 1991, CVGIP Image Underst..

[20]  Andrew W. Fitzgibbon,et al.  Direct Least Square Fitting of Ellipses , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[22]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[23]  Gösta H. Granlund,et al.  Fourier Preprocessing for Hand Print Character Recognition , 1972, IEEE Transactions on Computers.

[24]  K. Soga,et al.  Particle shape characterisation using Fourier descriptor analysis , 2001 .

[25]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[26]  Jin-Jang Leou,et al.  Automatic rotational symmetry determination for shape analysis , 1987, Pattern Recognit..

[27]  M. A. Shahin And S.J. Symons,et al.  Lentil type identification using machine vision , 2003 .

[28]  Paul L. Rosin Multiscale Representation and Matching of Curves Using Codons , 1993, CVGIP Graph. Model. Image Process..

[29]  Paul L. Rosin,et al.  A Convexity Measurement for Polygons , 2002, BMVC.

[30]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  David W. Jacobs,et al.  Robust and Efficient Detection of Salient Convex Groups , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Azriel Rosenfeld Compact Figures in Digital Pictures , 1974, IEEE Trans. Syst. Man Cybern..

[33]  I. Biederman,et al.  Surface versus edge-based determinants of visual recognition , 1988, Cognitive Psychology.

[34]  Hermilo Sánchez-Cruz,et al.  A method of optimum transformation of 3D objects used as a measure of shape dissimilarity , 2003, Image Vis. Comput..

[35]  Paul L. Rosin,et al.  A Rectilinearity Measurement for Polygons , 2002, ECCV.

[36]  G. Toussaint Solving geometric problems with the rotating calipers , 1983 .

[37]  S. Marshall,et al.  Review of shape coding techniques , 1989, Image Vis. Comput..

[38]  Herbert Süße,et al.  Invariant Fitting of Planar Objects by Primitives , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Geoff A. W. West,et al.  Nonparametric Segmentation of Curves into Various Representations , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  David Avis,et al.  A Linear Algorithm for Finding the Convex Hull of a Simple Polygon , 1979, Inf. Process. Lett..

[41]  Ronald Rousseau,et al.  Alternative area-perimeter ratios for measurement of 2D shape compactness of habitats , 2000, Appl. Math. Comput..

[42]  Paul L. Rosin Ellipse Fitting Using Orthogonal Hyperbolae and Stirling's Oval , 1998, Graph. Model. Image Process..

[43]  Mark H. Singer A general approach to moment calculation for polygons and line segments , 1993, Pattern Recognit..

[44]  J Farley Norman,et al.  The perception and discrimination of local 3-D surface structure from deforming and disparate boundary contours , 2002, Perception & psychophysics.

[45]  Horst Bunke,et al.  IDENTIFICATION USING CLASSICAL AND NEW FEATURES IN COMBINATION WITH DECISION TREE ENSEMBLES , 2002 .

[46]  Michel Petitjean,et al.  Chirality and Symmetry Measures: A Transdisciplinary Review , 2003, Entropy.

[47]  Paul L. Rosin Measuring shape: ellipticity, rectangularity, and triangularity , 2003, Machine Vision and Applications.