Uhlmann fidelity between two-mode Gaussian states

We analyze the Uhlmann fidelity of a pair of $n$-mode Gaussian states of the quantum radiation field. This quantity is shown to be the product of an exponential function depending on the relative average displacement and a factor fully determined by the symplectic spectrum of the covariance matrix of a specific Gaussian state. However, it is difficult to handle our general formula unless the Gaussian states commute or at least one of them is pure. On the contrary, in the simplest cases $n=1$ and $n=2$, it leads to explicit analytic formulas. Our main result is a calculable expression of the fidelity of two arbitrary two-mode Gaussian states. This can be applied to build reliable measures of quantum correlations between modes in various branches of quantum physics.

[1]  P. Marian,et al.  Bures distance as a measure of entanglement for two-mode squeezed thermal states (10 pages) , 2003 .

[2]  E. C. Yustas,et al.  Distance-based degrees of polarization for a quantum field (7 pages) , 2005, quant-ph/0504226.

[3]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[4]  G. Folland Harmonic Analysis in Phase Space. (AM-122), Volume 122 , 1989 .

[5]  H. Scutaru The states with Gaussian Wigner functions are quasi-free states , 1989 .

[6]  S. Olivares,et al.  Gaussian States in Quantum Information , 2005 .

[7]  Schumacher,et al.  Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.

[8]  Marian Squeezed states with thermal noise. I. Photon-number statistics. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[9]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[10]  Bures and statistical distance for squeezed thermal states , 1996, quant-ph/9603019.

[11]  Jaroslaw Adam Miszczak,et al.  Sub- and super-fidelity as bounds for quantum fidelity , 2008, Quantum Inf. Comput..

[12]  Alfredo Luis,et al.  Polarization distributions and degree of polarization for quantum Gaussian light fields , 2007 .

[13]  S. Gu Fidelity approach to quantum phase transitions , 2008, 0811.3127.

[14]  Paulina Marian,et al.  Quantifying nonclassicality of one-mode Gaussian states of the radiation field. , 2002, Physical review letters.

[15]  G. Bjork,et al.  Probing light polarization with the quantum Chernoff bound , 2010, 1008.3858.

[16]  Paolo Zanardi,et al.  Quantum criticality as a resource for quantum estimation , 2007, 0708.1089.

[17]  H. Scutaru,et al.  Fidelity for displaced squeezed thermal states and the oscillator semigroup , 1997, quant-ph/9708013.

[18]  H. Scutaru,et al.  Fidelity for multimode thermal squeezed states , 2000 .

[19]  Paulo E. M. F. Mendonca,et al.  Alternative fidelity measure between quantum states , 2008, 0806.1150.

[20]  J. Williamson On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .

[21]  Sudarshan,et al.  Gaussian-Wigner distributions in quantum mechanics and optics. , 1987, Physical review. A, General physics.

[22]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[23]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[24]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[25]  P. Marian,et al.  Bures distance as a measure of entanglement for symmetric two-mode Gaussian states , 2007, 0705.1138.

[26]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[27]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[28]  P. Marian,et al.  Gaussian entanglement of symmetric two-mode Gaussian states , 2007, 0711.3477.

[29]  A. Datta,et al.  Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.

[30]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[31]  M. Paris,et al.  Gaussian quantum discord. , 2010, Physical review letters.

[32]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[33]  G. Folland Harmonic analysis in phase space , 1989 .

[34]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[35]  E. C. Yustas,et al.  Maximally polarized states for quantum light fields , 2006, quant-ph/0610032.

[36]  L. L. Sanchez-Soto,et al.  Quantum degrees of polarization , 2010, 1005.3935.