Uhlmann fidelity between two-mode Gaussian states
暂无分享,去创建一个
[1] P. Marian,et al. Bures distance as a measure of entanglement for two-mode squeezed thermal states (10 pages) , 2003 .
[2] E. C. Yustas,et al. Distance-based degrees of polarization for a quantum field (7 pages) , 2005, quant-ph/0504226.
[3] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[4] G. Folland. Harmonic Analysis in Phase Space. (AM-122), Volume 122 , 1989 .
[5] H. Scutaru. The states with Gaussian Wigner functions are quasi-free states , 1989 .
[6] S. Olivares,et al. Gaussian States in Quantum Information , 2005 .
[7] Schumacher,et al. Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.
[8] Marian. Squeezed states with thermal noise. I. Photon-number statistics. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[9] Seth Lloyd,et al. Gaussian quantum information , 2011, 1110.3234.
[10] Bures and statistical distance for squeezed thermal states , 1996, quant-ph/9603019.
[11] Jaroslaw Adam Miszczak,et al. Sub- and super-fidelity as bounds for quantum fidelity , 2008, Quantum Inf. Comput..
[12] Alfredo Luis,et al. Polarization distributions and degree of polarization for quantum Gaussian light fields , 2007 .
[13] S. Gu. Fidelity approach to quantum phase transitions , 2008, 0811.3127.
[14] Paulina Marian,et al. Quantifying nonclassicality of one-mode Gaussian states of the radiation field. , 2002, Physical review letters.
[15] G. Bjork,et al. Probing light polarization with the quantum Chernoff bound , 2010, 1008.3858.
[16] Paolo Zanardi,et al. Quantum criticality as a resource for quantum estimation , 2007, 0708.1089.
[17] H. Scutaru,et al. Fidelity for displaced squeezed thermal states and the oscillator semigroup , 1997, quant-ph/9708013.
[18] H. Scutaru,et al. Fidelity for multimode thermal squeezed states , 2000 .
[19] Paulo E. M. F. Mendonca,et al. Alternative fidelity measure between quantum states , 2008, 0806.1150.
[20] J. Williamson. On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .
[21] Sudarshan,et al. Gaussian-Wigner distributions in quantum mechanics and optics. , 1987, Physical review. A, General physics.
[22] G. Vidal,et al. Computable measure of entanglement , 2001, quant-ph/0102117.
[23] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[24] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[25] P. Marian,et al. Bures distance as a measure of entanglement for symmetric two-mode Gaussian states , 2007, 0705.1138.
[26] N. Langford,et al. Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.
[27] M. Paris. Quantum estimation for quantum technology , 2008, 0804.2981.
[28] P. Marian,et al. Gaussian entanglement of symmetric two-mode Gaussian states , 2007, 0711.3477.
[29] A. Datta,et al. Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.
[30] M. Plenio,et al. Quantifying Entanglement , 1997, quant-ph/9702027.
[31] M. Paris,et al. Gaussian quantum discord. , 2010, Physical review letters.
[32] R. Jozsa. Fidelity for Mixed Quantum States , 1994 .
[33] G. Folland. Harmonic analysis in phase space , 1989 .
[34] S. Braunstein,et al. Quantum Information with Continuous Variables , 2004, quant-ph/0410100.
[35] E. C. Yustas,et al. Maximally polarized states for quantum light fields , 2006, quant-ph/0610032.
[36] L. L. Sanchez-Soto,et al. Quantum degrees of polarization , 2010, 1005.3935.