High-Gain Nonlinear Observer Using System State Augmentation

This paper deals with the problem of state estimation of dynamic systems with Lipschitz nonlinearities using a new high gain observer design. The aim of this new design procedure is to reduce the value of the tuning parameter and the observer gain compared to the standard high gain observer on the one hand without solving a set of LMIs as in the LMIbased observer on the other hand. Towards this end, a novel approach based on system state augmentation that transforms the original system of dimension n into a new system whose dimension is (n + js), where the new nonlinear function does not depend on js last components of the new state. A numerical example is reported to evaluate the effectiveness of the proposed observer for different values of the Lipschitz constant.

[1]  X. Xia,et al.  Nonlinear observer design by observer error linearization , 1989 .

[2]  L. Marconi,et al.  A High-Gain Nonlinear Observer With Limited Gain Power , 2015, IEEE Transactions on Automatic Control.

[3]  Martin Guay,et al.  Observer linearization by output-dependent time-scale transformations , 2002, IEEE Trans. Autom. Control..

[4]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[5]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[6]  Angelo Alessandri,et al.  Increasing-gain observers for nonlinear systems: Stability and design , 2015, Autom..

[7]  Ricardo G. Sanfelice,et al.  On the performance of high-gain observers with gain adaptation under measurement noise , 2011, Autom..

[8]  Héctor J. Sussmann,et al.  Single-input observability of continuous-time systems , 1978, Mathematical systems theory.

[9]  Nicolas Boizot,et al.  An adaptive high-gain observer for nonlinear systems , 2010, Autom..

[10]  Rajesh Rajamani,et al.  High-Gain Nonlinear Observer With Lower Tuning Parameter , 2019, IEEE Transactions on Automatic Control.

[11]  Andrew R. Teel,et al.  Further variants of the Astolfi/Marconi high-gain observer , 2016, 2016 American Control Conference (ACC).

[12]  Ali Zemouche,et al.  On LMI conditions to design observers for Lipschitz nonlinear systems , 2013, Autom..

[13]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[14]  Driss Boutat,et al.  Partial observer normal form for nonlinear system , 2016, Autom..

[15]  Hassan K. Khalil,et al.  Cascade high-gain observers in output feedback control , 2017, Autom..

[16]  Ali Zemouche,et al.  A unified Hinfinity adaptive observer synthesis method for a class of systems with both Lipschitz and monotone nonlinearities , 2009, Syst. Control. Lett..

[17]  R. Rajamani Observers for Lipschitz nonlinear systems , 1998, IEEE Trans. Autom. Control..

[18]  Driss Boutat,et al.  New algorithm for observer error linearization with a diffeomorphism on the outputs , 2009, Autom..

[19]  J. Gauthier,et al.  Deterministic Observation Theory and Applications , 2001 .

[20]  M. Hou,et al.  Observer with linear error dynamics for nonlinear multi-output systems , 1999 .

[21]  J. Gauthier,et al.  Observability and observers for non-linear systems , 1986, 1986 25th IEEE Conference on Decision and Control.

[22]  Mohammed M'Saad,et al.  A high gain observer with updated gain for a class of MIMO non-triangular systems , 2012, Syst. Control. Lett..

[23]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[24]  Yan Wang,et al.  Observer Design for Parameter Varying Differentiable Nonlinear Systems, With Application to Slip Angle Estimation , 2017, IEEE Transactions on Automatic Control.

[25]  Angelo Alessandri,et al.  Time-varying increasing-gain observers for nonlinear systems , 2013, Autom..

[26]  Daniele Astolfi,et al.  Low-power peaking-free high-gain observers for nonlinear systems , 2016, 2016 European Control Conference (ECC).

[27]  D. Luenberger An introduction to observers , 1971 .