Semicopositive linear complementarity systems

Inspired by the dynamic complementarity problem introduced by Mandelbaum, we define several matrix classes in terms of some integral conditions and discuss their connection with the existing class of strictly semicopositive matrices in linear complementarity theory. Using a time‐stepping approximation scheme, we establish the existence of an integrable solution to a class of index‐one linear complementarity systems (LCSs) involving these matrices, and that such a solution is ‘short‐time’ unique if the initial state belongs to a semiobservable cone defined in the recent paper (IEEE Trans. Autom. Control 2007, in press). In contrast to the existing well‐posedness theory for the LCS, our result is based on a well‐known matrix property that has not been used in the LCS literature before. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  David E. Stewart,et al.  Uniqueness for index-one differential variational inequalities , 2008 .

[2]  Jong-Shi Pang,et al.  Solution dependence on initial conditions in differential variational inequalities , 2008, Math. Program..

[3]  M. Kanat Camlibel,et al.  Algebraic Necessary and Sufficient Conditions for the Controllability of Conewise Linear Systems , 2008, IEEE Transactions on Automatic Control.

[4]  Jong-Shi Pang,et al.  Differential variational inequalities , 2008, Math. Program..

[5]  M. Kanat Camlibel,et al.  Popov-Belevitch-Hautus type controllability tests for linear complementarity systems , 2007, Syst. Control. Lett..

[6]  Jong-Shi Pang,et al.  Strongly Regular Differential Variational Systems , 2007, IEEE Transactions on Automatic Control.

[7]  M. Kanat Camlibel,et al.  Lyapunov Stability of Complementarity and Extended Systems , 2006, SIAM J. Optim..

[8]  M. Kanat Camlibel,et al.  Conewise Linear Systems: Non-Zenoness and Observability , 2006, SIAM J. Control. Optim..

[9]  D. Stewart Convolution complementarity problems with application to impact problems , 2006 .

[10]  Jong-Shi Pang,et al.  Linear Complementarity Systems: Zeno States , 2005, SIAM J. Control. Optim..

[11]  J. M. Schumacher,et al.  Complementarity systems in optimization , 2004, Math. Program..

[12]  M. Kanat Camlibel,et al.  On the Controllability of Bimodal Piecewise Linear Systems , 2004, HSCC.

[13]  Johannes Schumacher,et al.  Existence and uniqueness of solutions for a class of piecewise linear dynamical systems , 2002 .

[14]  W. Heemels,et al.  Consistency of a time-stepping method for a class of piecewise-linear networks , 2002 .

[15]  W. P. M. H. Heemels,et al.  Linear Complementarity Systems , 2000, SIAM J. Appl. Math..

[16]  W. Heemels,et al.  Well-posedness of linear complementarity systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[17]  Johannes Schumacher,et al.  Rational complementarity problem , 1998 .

[18]  A. J. van der Schaft,et al.  Complementarity modeling of hybrid systems , 1998, IEEE Trans. Autom. Control..

[19]  R. Cottle Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[20]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[21]  Kellen Petersen August Real Analysis , 2009 .

[22]  M. Çamlibel,et al.  Popov–Belevitch–Hautus type tests for the controllability of linear complementarity systems , 2007 .

[23]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[24]  M. Kanat Camlibel,et al.  On Linear Passive Complementarity Systems , 2002, Eur. J. Control.

[25]  J. Schumacher,et al.  Existence and uniqueness of solutions for a class of piecewise linear systems , 2002 .

[26]  M. Çamlibel Complementarity Methods in the Analysis of Piecewise Linear Dynamical Systems , 2001 .

[27]  W. Heemels Linear complementarity systems : a study in hybrid dynamics , 1999 .

[28]  Arjan van der Schaft,et al.  The complementary-slackness class of hybrid systems , 1996, Math. Control. Signals Syst..

[29]  Alain Bernard,et al.  Réflexions (ou régulations) de processus dans le premier «orthant» de Rn , 1989 .

[30]  S. Itoh,et al.  Variational inequalities and complementarity problems , 1978 .