Statistical classification techniques for photometric supernova typing
暂无分享,去创建一个
Melvin M. Varughese | R. Nichol | M. Kunz | H. Campbell | B. Bassett | R. Hložek | H. Lampeitl | J. Newling | D. Parkinson | Mathew Smith | B. Martin | M. Varughese | Bryony Martin
[1] J. Stephen,et al. Kernel density estimators applied to fast timing hard X-ray observations of the crab pulsar , 1991 .
[2] M. Fukugita,et al. The Sloan Digital Sky Survey Photometric System , 1996 .
[3] Yoav Freund,et al. A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.
[4] M. Phillips,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[5] É. Slezak,et al. Density estimation with non{parametric methods ? , 1997, astro-ph/9704096.
[6] R. Ellis,et al. Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.
[7] J. Friedman. Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .
[8] J. Friedman. Greedy function approximation: A gradient boosting machine. , 2001 .
[9] Bohdan Paczynski,et al. Small-telescope astronomy on global scales : IAU Colloquium 183, Proceedings of a Colloquium held in Kenting, Taiwan 4-8 January 2001 , 2001 .
[10] R. Bacon,et al. Overview of the Nearby Supernova Factory , 2002, SPIE Astronomical Telescopes + Instrumentation.
[11] J. Friedman. Stochastic gradient boosting , 2002 .
[12] J. Anthony Tyson,et al. Large Synoptic Survey Telescope: Overview , 2002, SPIE Astronomical Telescopes + Instrumentation.
[13] J. Surdej,et al. The XMM-LSS survey. First high redshift galaxy clusters: Relaxed and collapsing systems , 2003, astro-ph/0305192.
[14] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[15] Christopher J. Miller,et al. Galaxy ecology: groups and low-density environments in the SDSS and 2dFGRS , 2003, astro-ph/0311379.
[16] R. Nichol,et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.
[17] T. Lauer,et al. Observing Dark Energy , 2005 .
[18] B. Roe,et al. Boosted decision trees as an alternative to artificial neural networks for particle identification , 2004, physics/0408124.
[19] M. Langlois,et al. Society of Photo-Optical Instrumentation Engineers , 2005 .
[20] J. Prieto,et al. Hubble Space Telescope and Ground-based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications , 2005, astro-ph/0510155.
[21] H. Hoekstra,et al. Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.
[22] Huan Lin,et al. A Galaxy Photometric Redshift Catalog for the Sloan Digital Sky Survey Data Release 6 , 2007, 0708.0030.
[23] M. Sullivan,et al. SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.
[24] M. Kunz,et al. Bayesian estimation applied to multiple species , 2006, astro-ph/0611004.
[25] Alexander S. Szalay,et al. Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey , 2007 .
[26] A. Munk,et al. Non‐parametric confidence bands in deconvolution density estimation , 2007 .
[27] J. Kaplan,et al. THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.
[28] Adam D. Myers,et al. Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications , 2008, 0801.4380.
[29] J. Vanderplas,et al. FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.
[30] Armin Rest,et al. IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.
[31] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[32] IfA,et al. The Observed Growth of Massive Galaxy Clusters I: Statistical Methods and Cosmological Constraints , 2009, 0909.3098.
[33] J. Vanderplas,et al. First-year Sloan Digital Sky Survey-II supernova results: consistency and constraints with other intermediate-redshift data sets , 2009, 0910.2193.
[34] Kevin Krisciunas,et al. THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-Ia SUPERNOVAE , 2009, 0910.3317.
[35] Yago Ascasibar,et al. Estimating multidimensional probability fields using the Field Estimator for Arbitrary Spaces (FiEstAS) with applications to astrophysics , 2010, Comput. Phys. Commun..
[36] Alexander S. Szalay,et al. Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.
[37] Jiangang Hao,et al. ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES , 2009, The Astrophysical Journal.
[38] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.