Iron deficiency in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention.

[1]  D. Andreini,et al.  Association Between Haptoglobin Phenotype and Microvascular Obstruction in Patients With STEMI: A Cardiac Magnetic Resonance Study. , 2019, JACC. Cardiovascular imaging.

[2]  R. Schnabel,et al.  Adverse Outcome Prediction of Iron Deficiency in Patients with Acute Coronary Syndrome , 2018, Biomolecules.

[3]  D. Swinkels,et al.  Definition of Iron Deficiency Based on the Gold Standard of Bone Marrow Iron Staining in Heart Failure Patients , 2018, Circulation. Heart failure.

[4]  Y. Konstantinov,et al.  The level of free circulating mitochondrial DNA in blood as predictor of death in case of acute coronary syndrome , 2017, European Journal of Medical Research.

[5]  G. Dorn,et al.  Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement From the American Heart Association. , 2016, Circulation research.

[6]  J. Comín-Colet,et al.  Déficit de hierro en pacientes con síndrome coronario agudo: prevalencia y factores predisponentes , 2016 .

[7]  D. Andreini,et al.  Myocardial Infarct Size in Patients on Long-Term Statin Therapy Undergoing Primary Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction. , 2015, The American journal of cardiology.

[8]  Lijun Wang,et al.  Plasma nuclear and mitochondrial DNA levels in acute myocardial infarction patients , 2015, Coronary artery disease.

[9]  A. Cohen-Solal,et al.  High prevalence of iron deficiency in patients with acute decompensated heart failure , 2014, European journal of heart failure.

[10]  C. Kuo,et al.  Serum Iron Concentration, but Not Hemoglobin, Correlates with TIMI Risk Score and 6-Month Left Ventricular Performance after Primary Angioplasty for Acute Myocardial Infarction , 2014, PloS one.

[11]  R. Bueno,et al.  Circulating Mitochondrial DNA in Patients in the ICU as a Marker of Mortality: Derivation and Validation , 2013, PLoS medicine.

[12]  G. Niccoli,et al.  Microvascular obstruction after primary percutaneous coronary intervention: pathogenesis, diagnosis and prognostic significance. , 2013, Current vascular pharmacology.

[13]  P. Ponikowski,et al.  Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives , 2012, European heart journal.

[14]  P. Ponikowski,et al.  The effect of intravenous ferric carboxymaltose on health-related quality of life in patients with chronic heart failure and iron deficiency: a subanalysis of the FAIR-HF study , 2012, European heart journal.

[15]  E. López-Collazo,et al.  Circulating cell-free mitochondrial DNA: a better early prognostic marker in patients with out-of-hospital cardiac arrest. , 2012, Resuscitation.

[16]  G. Andersen,et al.  Increased circulating mitochondrial DNA after myocardial infarction. , 2012, International journal of cardiology.

[17]  J. Holst,et al.  Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. , 2012, European heart journal.

[18]  A. Dart,et al.  Effect of Iron Chelation on Myocardial Infarct Size and Oxidative Stress in ST-Elevation–Myocardial Infarction , 2012, Circulation. Cardiovascular interventions.

[19]  Sunil K. Kakarla,et al.  Iron-Induced Cardiac Damage: Role of Apoptosis and Deferasirox Intervention , 2011, Journal of Pharmacology and Experimental Therapeutics.

[20]  A. Kastrati,et al.  5-year prognostic value of no-reflow phenomenon after percutaneous coronary intervention in patients with acute myocardial infarction. , 2010, Journal of the American College of Cardiology.

[21]  M. Núñez,et al.  Iron induces protection and necrosis in cultured cardiomyocytes: Role of reactive oxygen species and nitric oxide. , 2010, Free radical biology & medicine.

[22]  E. Ruokonen,et al.  Cell-free plasma DNA as a predictor of outcome in severe sepsis and septic shock. , 2008, Clinical chemistry.

[23]  Richard F Hurrell,et al.  Nutritional iron deficiency , 2007, The Lancet.

[24]  F. Veglia,et al.  Impact of cardiac and renal dysfunction on inhospital morbidity and mortality of patients with acute myocardial infarction undergoing primary angioplasty. , 2007, American heart journal.

[25]  P. Bernardi,et al.  Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. , 2006, Cardiovascular research.

[26]  K. Pantopoulos,et al.  Iron metabolism and toxicity. , 2005, Toxicology and applied pharmacology.

[27]  Y. Lo,et al.  Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. , 2003, Clinical chemistry.

[28]  J. Boura,et al.  Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction : a quantitative review of 23 randomised trials , 2022 .

[29]  A. Hofman,et al.  Iron status in the acute phase and six weeks after myocardial infarction. , 1990, Free radical biology & medicine.

[30]  M. Weisfeldt,et al.  Improvement of postischemic myocardial function and metabolism induced by administration of deferoxamine at the time of reflow: the role of iron in the pathogenesis of reperfusion injury. , 1987, Circulation.