Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates

[1]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[2]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[3]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[4]  Bin Wang,et al.  Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors , 2009 .

[5]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[6]  Po-Chiang Chen,et al.  Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films , 2009 .

[7]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[8]  John A Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[9]  G. Graff,et al.  Cover Picture: Oriented Nanostructures for Energy Conversion and Storage (ChemSusChem 8-9-9/2008) , 2008 .

[10]  Zhenguo Yang,et al.  Oriented nanostructures for energy conversion and storage. , 2008, ChemSusChem.

[11]  Lijie Ci,et al.  Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes. , 2008, Chemical communications.

[12]  Joondong Kim,et al.  Inkjet printing of single-walled carbon nanotubes and electrical characterization of the line pattern , 2008, Nanotechnology.

[13]  G. Grüner,et al.  Carbon nanotube based battery architecture , 2007 .

[14]  M. in het Panhuis,et al.  Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. , 2007, Small.

[15]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[16]  Subodh G. Mhaisalkar,et al.  Bifunctional carbon nanotube networks for supercapacitors , 2007 .

[17]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.

[18]  Fu-Rong Chen,et al.  Growth of single-crystalline RuO2 nanowires with one- and two-nanocontact electrical characterizations , 2007 .

[19]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[20]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[21]  Ning Pan,et al.  High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition , 2006 .

[22]  Daihua Zhang,et al.  Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. , 2006, Nano letters.

[23]  Heli Jantunen,et al.  Inkjet printing of electrically conductive patterns of carbon nanotubes. , 2006, Small.

[24]  S. Miao,et al.  Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethyl amine , 2006 .

[25]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[26]  François Béguin,et al.  Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium , 2006 .

[27]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[28]  T. Lim,et al.  Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. , 2005, Small.

[29]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[30]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[31]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[32]  G. Wu,et al.  Electrochemical characterization on RuO2 · xH2O/carbon nanotubes composite electrodes for high energy density supercapacitors , 2004 .

[33]  Irene M. Plitz,et al.  A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications , 2003 .

[34]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[35]  Seong Chu Lim,et al.  Supercapacitors Using Single‐Walled Carbon Nanotube Electrodes , 2001 .

[36]  Ralph E. White,et al.  Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors , 2001 .

[37]  K. Méténier,et al.  Supercapacitor electrodes from multiwalled carbon nanotubes , 2000 .

[38]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[39]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[40]  S. Trasatti Physical electrochemistry of ceramic oxides , 2010 .

[41]  S. Ardizzone,et al.  "Inner" and "outer" active surface of RuO2 electrodes , 1990 .