Constraints Assisted Modeling and Validation in Metropolis Framework

This paper focuses on quantitative constraints specified with logic of constraints (LOC) and coordination constraints with linear temporal logic (LTL) that are used in the specification, modeling, and validation of heterogeneous embedded system design. Quantity annotation is the principal approach for modeling performance information in Metropolis, our experiment platform. Quantitative constraints are then used to enforce and to refine simulation. They can also be used in synthesis settings especially for deciding system level parameters such as scheduling and hardware-software partitioning. Similarly, we utilize LTL in Metropolis to quickly refine the system behavior especially process coordinations. On the validation aspect, LOC and LTL are also used to specify assertions for simulation and for formal verification. We demonstrate our approach with a multimedia example from the industry.

[1]  Fabio Somenzi,et al.  Efficient Büchi Automata from LTL Formulae , 2000, CAV.

[2]  Paul Gastin,et al.  Fast LTL to Büchi Automata Translation , 2001, CAV.

[3]  Alberto L. Sangiovanni-Vincentelli,et al.  Separation of concerns: overhead in modeling and efficient simulation techniques , 2004, EMSOFT '04.

[4]  Alberto L. Sangiovanni-Vincentelli,et al.  System-level design: orthogonalization of concerns andplatform-based design , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[5]  Alberto L. Sangiovanni-Vincentelli,et al.  Simulation based deadlock analysis for system level designs , 2005, Proceedings. 42nd Design Automation Conference, 2005..

[6]  Luciano Lavagno,et al.  A time slice based scheduler model for system level design , 2005, Design, Automation and Test in Europe.

[7]  Xi Chen,et al.  Logic of constraints: a quantitative performance and functional constraint formalism , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[8]  Â. È Ê Â Â Û Û Ò Ç ^ R R Ó Ae — Ú Ú Ë Ë Â Ê Ì È Â Ê Â Verifying Temporal Properties without Temporal Logic , 1988 .

[9]  Andreas Podelski,et al.  Tools and algorithms for the construction and analysis of systems , 2006, International Journal on Software Tools for Technology Transfer.

[10]  Tiziana Margaria,et al.  Tools and algorithms for the construction and analysis of systems: a special issue for TACAS 2017 , 2001, International Journal on Software Tools for Technology Transfer.

[11]  Luciano Lavagno,et al.  Metropolis: an integrated environment for electronic system design , 2003 .

[12]  Nils Klarlund,et al.  Mona: Monadic Second-Order Logic in Practice , 1995, TACAS.

[13]  Luciano Lavagno,et al.  Concurrent execution semantics and sequential simulation algorithms for the Metropolis meta-model , 2002, Proceedings of the Tenth International Symposium on Hardware/Software Codesign. CODES 2002 (IEEE Cat. No.02TH8627).

[14]  Luciano Lavagno,et al.  Metropolis: An Integrated Electronic System Design Environment , 2003, Computer.

[15]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[16]  R. Ulusay,et al.  Object Constraint Language Specification , 1997 .

[17]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[18]  허윤정,et al.  Holzmann의 ˝The Model Checker SPIN˝에 대하여 , 1998 .

[19]  K. Keutzer,et al.  System-level design: orthogonalization of concerns andplatform-based design , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[20]  Aloysius K. Mok,et al.  Safety analysis of timing properties in real-time systems , 1986, IEEE Transactions on Software Engineering.

[21]  Xi Chen,et al.  Formal Verification for Embedded System Designs , 2003, Des. Autom. Embed. Syst..