Randomized detection of extraneous factors
暂无分享,去创建一个
[1] Deepak Kapur,et al. Cayley-Dixon projection operator for multi-univariate composed polynomials , 2009, J. Symb. Comput..
[2] Victor Y. Pan,et al. The structure of sparse resultant matrices , 1997, ISSAC.
[3] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[4] Deepak Kapur,et al. Extraneous factors in the Dixon resultant formulation , 1997, ISSAC.
[5] Ágnes Szántó. Solving over-determined systems by the subresultant method (with an appendix by Marc Chardin) , 2008, J. Symb. Comput..
[6] Deepak Kapur,et al. Exact resultants for corner-cut unmixed multivariate polynomial systems using the Dixon formulation , 2003, J. Symb. Comput..
[7] Richard Zippel,et al. Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..
[8] C. D'Andrea,et al. Explicit formulas for the multivariate resultant , 2000, math/0007036.
[9] Erich Kaltofen. Effective Hilbert Irreducibility , 1985, Inf. Control..
[10] Deepak Kapur,et al. Conditions for exact resultants using the Dixon formulation , 2000, ISSAC.
[11] F. S. Macaulay,et al. The Algebraic Theory of Modular Systems , 1972 .
[12] Chaok Seok,et al. A kinematic view of loop closure , 2004, J. Comput. Chem..
[13] N. Jacobson,et al. Basic Algebra I , 1976 .
[14] J. Maurice Rojas,et al. Solving Degenerate Sparse Polynomial Systems Faster , 1998, J. Symb. Comput..
[15] Franz Winkler,et al. Polynomial Algorithms in Computer Algebra , 1996, Texts and Monographs in Symbolic Computation.
[16] Alicia Dickenstein,et al. Multihomogeneous resultant formulae by means of complexes , 2003, J. Symb. Comput..
[17] Bernd Sturmfels,et al. Product formulas for resultants and Chow forms , 1993 .
[18] Manfred Minimair. MR: Macaulay Resultant package for Maple , 2004, SIGS.
[19] C. D'Andrea. Macaulay style formulas for sparse resultants , 2001 .
[20] Richard Zippel,et al. Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.
[21] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[22] Robert H. Lewis. Heuristics to accelerate the Dixon resultant , 2008, Math. Comput. Simul..
[23] I. Shafarevich,et al. Basic algebraic geometry 1 (2nd, revised and expanded ed.) , 1994 .
[24] John F. Canny,et al. Generalised Characteristic Polynomials , 1990, J. Symb. Comput..
[25] Béla Paláncz,et al. Application of Dixon resultant to satellite trajectory control by pole placement , 2013, J. Symb. Comput..
[26] Manfred Minimair. Sparse Resultant under Vanishing Coefficients , 2003 .
[27] J. Jouanolou,et al. Le formalisme du résultant , 1991 .
[28] Jacob T. Schwartz,et al. Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.