Randomized detection of extraneous factors

A projection operator of a system of parametric polynomials is a polynomial in the coefficients of the system that vanishes if the system has a common root. The projection operator is a multiple of the resultant of the system, and the factors of the projection operator that are not contained in the resultant are called extraneous factors. The main contribution of this work is to provide a randomized algorithm to check whether a factor is extraneous, which is an important task in applications. A lower bound for the success probability is determined which can be set arbitrarily close to one. This algorithm uses certain matrices rather than Gröbner bases and seems to be the first algorithm of this kind for this task.

[1]  Deepak Kapur,et al.  Cayley-Dixon projection operator for multi-univariate composed polynomials , 2009, J. Symb. Comput..

[2]  Victor Y. Pan,et al.  The structure of sparse resultant matrices , 1997, ISSAC.

[3]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[4]  Deepak Kapur,et al.  Extraneous factors in the Dixon resultant formulation , 1997, ISSAC.

[5]  Ágnes Szántó Solving over-determined systems by the subresultant method (with an appendix by Marc Chardin) , 2008, J. Symb. Comput..

[6]  Deepak Kapur,et al.  Exact resultants for corner-cut unmixed multivariate polynomial systems using the Dixon formulation , 2003, J. Symb. Comput..

[7]  Richard Zippel,et al.  Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..

[8]  C. D'Andrea,et al.  Explicit formulas for the multivariate resultant , 2000, math/0007036.

[9]  Erich Kaltofen Effective Hilbert Irreducibility , 1985, Inf. Control..

[10]  Deepak Kapur,et al.  Conditions for exact resultants using the Dixon formulation , 2000, ISSAC.

[11]  F. S. Macaulay,et al.  The Algebraic Theory of Modular Systems , 1972 .

[12]  Chaok Seok,et al.  A kinematic view of loop closure , 2004, J. Comput. Chem..

[13]  N. Jacobson,et al.  Basic Algebra I , 1976 .

[14]  J. Maurice Rojas,et al.  Solving Degenerate Sparse Polynomial Systems Faster , 1998, J. Symb. Comput..

[15]  Franz Winkler,et al.  Polynomial Algorithms in Computer Algebra , 1996, Texts and Monographs in Symbolic Computation.

[16]  Alicia Dickenstein,et al.  Multihomogeneous resultant formulae by means of complexes , 2003, J. Symb. Comput..

[17]  Bernd Sturmfels,et al.  Product formulas for resultants and Chow forms , 1993 .

[18]  Manfred Minimair MR: Macaulay Resultant package for Maple , 2004, SIGS.

[19]  C. D'Andrea Macaulay style formulas for sparse resultants , 2001 .

[20]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[21]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[22]  Robert H. Lewis Heuristics to accelerate the Dixon resultant , 2008, Math. Comput. Simul..

[23]  I. Shafarevich,et al.  Basic algebraic geometry 1 (2nd, revised and expanded ed.) , 1994 .

[24]  John F. Canny,et al.  Generalised Characteristic Polynomials , 1990, J. Symb. Comput..

[25]  Béla Paláncz,et al.  Application of Dixon resultant to satellite trajectory control by pole placement , 2013, J. Symb. Comput..

[26]  Manfred Minimair Sparse Resultant under Vanishing Coefficients , 2003 .

[27]  J. Jouanolou,et al.  Le formalisme du résultant , 1991 .

[28]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.