Nanostructures from Zirconium Diboride and Alumina Ceramics

In this paper, we describe the observation of nanostructure formation under microwave processing of zirconium diboride powder with aluminum oxide. These nanostructures appear to be formed from arcing resulting from a microwave-induced electric field across conductive ZrB2 particles. Microwave heating allows process times <1 min. The arcing rapidly heated the ZrB2 and nearby alumina creating nanotubes and nanorods. The morphology of these nanostructures was characterized using scanning and transmission electron microscopy (TEM), showing ∼100 nm tube wall thicknesses with widths up to a few micrometer and lengths to 40 μm. Energy-dispersive X-ray spectroscopy showed the composition of the nanotubes included aluminum, oxygen, zirconium, and boron. Fast Fourier transform's of the TEM images provided characterization of the lattice parameters. Morphology, composition and crystallography resemble both single-crystal aluminum borate and boron-mullite nanotubes. The produced nanostructures could be used to reinforce high-temperature materials, improve the durability of metal surfaces or as needles for intracellular drug delivery.

[1]  Qi-yuan Chen,et al.  Phase diagram of the system KNO3+LiNO3+Mg(NO3)2+H2O , 2011 .

[2]  Hongwen Ma,et al.  Effect of V2O5 on the properties of mullite ceramics synthesized from high-aluminum fly ash and bauxite. , 2009, Journal of hazardous materials.

[3]  D. Sciti,et al.  Oxidation behaviour of a pressureless sintered HfB2–MoSi2 composite , 2009 .

[4]  N. M. Miskovsky,et al.  Microwave absorption in percolating metal-insulator composites , 2008 .

[5]  Wenting Sun,et al.  Discharge features of radio-frequency, atmospheric-pressure cold plasmas under an intensified local electric field , 2008 .

[6]  Mool C. Gupta,et al.  Zirconium diboride nanofiber generation via microwave arc heating , 2008, Nanotechnology.

[7]  Mool C. Gupta,et al.  Laser Sintering of ZrB2 , 2008 .

[8]  G. Hilmas,et al.  Thermophysical Properties of ZrB2-Based Ceramics , 2008 .

[9]  A. Beran,et al.  Boron incorporation into mullite , 2008 .

[10]  J. Halloran,et al.  Zirconia Transport by Liquid Convection during Oxidation of Zirconium Diboride–Silicon Carbide , 2007 .

[11]  Hong-Chae Park,et al.  Mullite whiskers derived from coal fly ash , 2007 .

[12]  N. M. Miskovsky,et al.  Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts , 2007 .

[13]  H. Huppertz,et al.  High-pressure synthesis, crystal structure, and properties of the first ternary hafniumborate β-HfB2O5 , 2007 .

[14]  G. Hilmas,et al.  Fabrication and properties of reactively hot pressed ZrB2–SiC ceramics , 2007 .

[15]  R. Chang,et al.  Synthesis and characterization of aluminum borate (Al18B4O33, Al4B2O9) nanowires and nanotubes , 2006 .

[16]  G. Hilmas,et al.  Pressureless Sintering of Zirconium Diboride , 2006 .

[17]  W. Fahrenholtz The ZrB2 Volatility Diagram , 2005 .

[18]  H. Schneider,et al.  AlO4/SiO4 distribution in tetrahedral double chains of mullite , 2005 .

[19]  Y. Huang,et al.  Large-scale preparation of aluminum borate-coated aluminum oxide nanowires , 2005 .

[20]  D. Sciti,et al.  Oxidation behavior of a pressureless sintered ZrB_2–MoSi_2 ceramic composite , 2005 .

[21]  H. Miao,et al.  Polygonal Single‐Crystal Aluminum Borate Microtubes , 2005 .

[22]  Guanghou Wang,et al.  Synthesis and Characterization of Zirconia Nanorods , 2004 .

[23]  Q. Nguyen,et al.  Oxidation of Ultrahigh Temperature Ceramics in Water Vapor , 2004 .

[24]  X. Kong,et al.  Rectangular Single‐Crystal Mullite Microtubes , 2003 .

[25]  S. Qi,et al.  Catalytic synthesis of aluminum borate nanowires , 2003 .

[26]  Hongwei Zhu,et al.  Synthesis of boron nitride nanofibers and measurement of their hydrogen uptake capacity , 2002 .

[27]  Hui‐Ming Cheng,et al.  Boron nitride nanotubes filled with zirconium oxide nanorods , 2002 .

[28]  R. Ma,et al.  Nanowires of metal borates , 2002 .

[29]  R. Ma,et al.  Single-Crystal Al18B4O33 Microtubes , 2002 .

[30]  H. Schneider,et al.  High-Temperature Hydroxylation of Mullite , 2002 .

[31]  R. Roy,et al.  Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites , 2001 .

[32]  N. S. Yuritsyn,et al.  Refractoriness and Phase Composition of ZrB2-Si Materials , 2001 .

[33]  W. Kockelmann,et al.  Silica-free mullite structures in the Al2O3-B2O3-P2O5 ternary system , 2001 .

[34]  Xuan Lin,et al.  Pressureless sintering of B4C whisker reinforced Al2O3 matrix composites , 2000 .

[35]  Rustum Roy,et al.  Full sintering of powdered-metal bodies in a microwave field , 1999, Nature.

[36]  T. Basak,et al.  Analysis of Microwave Sintering of Ceramics , 1998 .

[37]  Y. Gogotsi,et al.  Oxidation Behaviour of a Hot Isostatically Pressed TiB2-AIN Composite , 1995 .

[38]  W. Thomson,et al.  Tetragonal to orthorhombic transformation during mullite formation , 1991 .

[39]  K. C. Patil,et al.  A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials , 1988 .

[40]  R. Doremus,et al.  Alumina‐Silica Phase Diagram in the Mollite Region , 1987 .

[41]  P. Gielisse,et al.  The System Al2O3–B2O3 , 1962, Nature.