Smart-pixel cellular neural networks in analog current-mode CMOS technology

This paper presents a systematic approach to design CMOS chips with concurrent picture acquisition and processing capabilities. These chips consist of regular arrangements of elementary units, called smart pixels. Light detection is made with vertical CMOS-BJT's connected in a Darlington structure. Pixel smartness is achieved by exploiting the cellular neural network paradigm, incorporating at each pixel location an analog computing cell which interacts with those of nearby pixels. We propose a current-mode implementation technique and give measurements from two 16 x 16 prototypes in a single-poly double-metal CMOS n-well 1.6-/spl mu/m technology. In addition to the sensory and processing circuitry, both chips incorporate light-adaptation circuitry for automatic contrast adjustment. They obtain smart-pixel densities up to 89 units/mm/sup 2/, with a power consumption down to 105 /spl mu/W/unit and image processing times below 2 /spl mu/s. >

[1]  Christer Svensson,et al.  An addressable 256×256 photodiode image sensor array with an 8-bit digital output , 1993, ESSCIRC '92: Eighteenth European Solid-State Circuits conference.

[2]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .

[3]  Á. Rodríguez-Vázquez,et al.  Current-mode techniques for the implementation of continuous- and discrete-time cellular neural networks , 1993 .

[4]  Sankar K. Pal,et al.  Fuzzy models for pattern recognition , 1992 .

[5]  Leon O. Chua,et al.  A two-layer Radon transform cellular neural network , 1992 .

[6]  Josef A. Nossek,et al.  An analog implementation of discrete-time cellular neural networks , 1992, IEEE Trans. Neural Networks.

[7]  J. L. White,et al.  An active resistor network for Gaussian filtering of images , 1991 .

[8]  Leon O. Chua,et al.  CNN cloning template: shadow detector , 1990 .

[9]  John Lazzaro,et al.  Computing motion using analog VLSI vision chips: an experimental comparison among four approaches , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[10]  G. Pearce,et al.  Analogue IC Design: the Current Mode Approach , 1992 .

[11]  Leon O. Chua,et al.  CNN cloning template: hole-filler , 1990 .

[12]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[13]  Leon O. Chua,et al.  A CNN handwritten character recognizer , 1992, Int. J. Circuit Theory Appl..

[14]  A. H. Sayles,et al.  An optoelectronic CMOS memory circuit for parallel detection and storage of optical data , 1991 .

[15]  Takeo Kanade,et al.  Integrated sensor and range-finding analog signal processor , 1991 .

[16]  Leon O. Chua,et al.  Resistive grid image filtering: input/output analysis via the CNN framework , 1992 .

[17]  John L. Wyatt,et al.  CMOS resistive fuses for image smoothing and segmentation , 1992 .

[18]  Leon O. Chua,et al.  Cellular neural networks with non-linear and delay-type template elements and non-uniform grids , 1992, Int. J. Circuit Theory Appl..

[19]  Marcel J. M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[20]  J.L. Huertas,et al.  High Resolution CMOS Current Comparators , 1992, ESSCIRC '92: Eighteenth European Solid-State Circuits conference.

[21]  C.A.T. Salama,et al.  Image-motion detection using analog VLSI , 1992 .

[22]  Leon O. Chua,et al.  Image halftoning with cellular neural networks , 1993 .

[23]  Eric A. Vittoz The Design of High-Performance Analog Circuits on Digital CMOS Chips , 1985 .

[24]  Leon O. Chua,et al.  A CNN chip for connected component detection , 1991 .

[25]  Leon O. Chua,et al.  Detecting simple motion using cellular neural networks , 1990, IEEE International Workshop on Cellular Neural Networks and their Applications.

[26]  Leon O. Chua,et al.  CNN cloning template: connected component detector , 1990 .