A new skeletal rearrangement of 1,7-dimethyl Cookson's cage dione catalyzed by a Lewis acid.

A methyl-substituted polycyclic cage dione containing the PCUD framework has undergone an unprecedented ring rearrangement approach. Here, the PCUD framework with the aid of a Lewis acid such as BF3·MeOH gave unusual fragmentation products. Two new products were isolated via the skeletal rearrangement process involving carbocation mediated intermediates. The substituents in the succinyl bond present in the strained PCUD skeleton produce a driving force for the rearrangement in an unprecedented manner. Interestingly, the cyclobutane ring was transformed to cyclopentane through the cleavage of the C1-C7 bond during the ring-expansion process of PCUD via the carbocation intermediates. Unexpectedly, solvent (benzene) was captured during the ring-homologation process due to the presence of methyl substituents placed at the cyclobutane ring of the cage framework. It appears that this is the first report where an unexpected ring-rearrangement, ring-homologation, and ring-fragmentation occur with the aid of the BF3·MeOH complex.

[1]  A. Oliver,et al.  Prying open a Thiele cage: discovery of an unprecedented extended pinacol rearrangement. , 2019, Chemical communications.

[2]  S. Kotha,et al.  Synthesis of functionalized cage propellanes and D3-Trishomocubanes via the ring-closing metathesis and acid-promoted rearrangement , 2019, Tetrahedron.

[3]  S. Kotha,et al.  Synthesis of cage [4.4.2]propellanes and $${D_{3}}$$D3-trishomocubanes bearing spiro linkage , 2018, Journal of Chemical Sciences.

[4]  S. Kotha,et al.  Molecular Acrobatics in Polycyclic Frames: Synthesis of Functionalized D3-Trishomocubanes via the Rearrangement Approach. , 2018, The Journal of organic chemistry.

[5]  S. Kotha,et al.  Synthesis and Rearrangement of Cage [4.3.2]Propellanes that Contain a Spiro Linkage , 2017 .

[6]  A. de Meijere,et al.  Propellanes-From a Chemical Curiosity to "Explosive" Materials and Natural Products. , 2017, Angewandte Chemie.

[7]  K. Mlinarić-Majerski,et al.  Adamantane in Drug Delivery Systems and Surface Recognition , 2017, Molecules.

[8]  J. R. Griffiths,et al.  Cubane: 50 years later. , 2015, Chemical reviews.

[9]  F. Khan,et al.  BF3-Et2O mediated skeletal rearrangements of norbornyl appended cyclopentanediols. , 2015, Organic & biomolecular chemistry.

[10]  Shane M. Wilkinson,et al.  The first CNS-active carborane: A novel P2X7 receptor antagonist with antidepressant activity. , 2014, ACS chemical neuroscience.

[11]  M. Kassiou,et al.  N-substituted 8-aminopentacyclo[5.4.0.0(2,6).0(3,10).0(5,9)]undecanes as σ receptor ligands with potential neuroprotective effects. , 2013, Bioorganic & medicinal chemistry.

[12]  Rajasekhar Reddy Naredla,et al.  Contemporary carbocation chemistry: applications in organic synthesis. , 2013, Chemical reviews.

[13]  Oluseye K. Onajole,et al.  Novel polycyclic 'cage'-1,2-diamines as potential anti-tuberculosis agents. , 2012, European journal of medicinal chemistry.

[14]  B. Ganguly,et al.  Generation and trapping of a cage annulated vinylidenecarbene and approaches to its cycloalkyne isomer. , 2012, The Journal of organic chemistry.

[15]  J. Aubé,et al.  Mechanism of the acid-promoted intramolecular schmidt reaction: theoretical assessment of the importance of lone pair-cation, cation-π, and steric effects in controlling regioselectivity. , 2012, The Journal of organic chemistry.

[16]  C. Parsons,et al.  Preparation and testing of homocubyl amines as therapeutic NMDA receptor antagonists , 2012, Medicinal Chemistry Research.

[17]  Dmitry I. Sharapa,et al.  A Convenient Road to 1-Chloropentacycloundecanes – A Joint Experimental and Computational Investigation , 2011 .

[18]  A. Reynolds,et al.  Trishomocubane as a scaffold for the development of selective dopamine transporter (DAT) ligands. , 2011, Bioorganic & medicinal chemistry letters.

[19]  W. Geldenhuys,et al.  Polycyclic compounds: Ideal drug scaffolds for the design of multiple mechanism drugs? , 2011, Neurotherapeutics.

[20]  M. Kassiou,et al.  Behavioural effects of trishomocubanes in rats with unilateral 6-hydroxydopamine lesions , 2008, Behavioural Brain Research.

[21]  S. Malan,et al.  Medicinal chemistry of polycyclic cage compounds in drug discovery research , 2008, Medicinal Chemistry Research.

[22]  M. Nair,et al.  Synthesis of novel highly functionalized biologically active polycyclic caged amides , 2007 .

[23]  E. Suresh,et al.  Formation of novel polycyclic cage compounds through 'uncaging' of readily accessible higher cage compounds , 2006 .

[24]  P. Schreiner,et al.  4,7,11‐Triheterotrishomocubanes – Propeller‐Shaped Highly Symmetrical Chiral Molecules Derived from Barrelene , 2006 .

[25]  Penny U. Govender,et al.  Analysis of the conformational profile of trishomocubane amino acid dipeptide , 2006, Biopolymers.

[26]  W. Geldenhuys,et al.  Pharmacology and structure‐activity relationships of bioactive polycyclic cage compounds: A focus on pentacycloundecane derivatives , 2005, Medicinal research reviews.

[27]  R. Tapia,et al.  Synthesis of indazol-4,7-dione derivatives as potential trypanocidal agents , 2002 .

[28]  M. Kassiou,et al.  Trishomocubanes: novel σ-receptor ligands modulate amphetamine-stimulated [3H]dopamine release , 2001 .

[29]  H. Hariprakasha,et al.  Synthesis of novel cage oxaheterocycles. , 2001, The Journal of organic chemistry.

[30]  J. E. D. Martins,et al.  On the mechanism of skeletal rearrangements in the acid catalysed acetylation of isodrin , 2001 .

[31]  Hisashi Yamamoto Lewis acids in organic synthesis , 2000 .

[32]  M. Nair,et al.  Two fascinating rearrangements through selective placement of bromine substituents. Photochemical synthesis of 3-bromo-7-(bromomethyl) tetracyclo[5.3.1.02,6.04,8]undec-10(12)-ene-9,11-dione and its rearrangement with amines , 1999 .

[33]  S. Alihodžić,et al.  Photochemical Chlorocarbonylation of HCTD by Oxalyl Chloride. Carbocation-Mediated Rearrangement of HCTD Derivatives to Novel, Substituted Heptacyclopentadecanes , 1998 .

[34]  B. Ganguly,et al.  Thermodynamic rearrangement of the pentacyclo[5.4.0.02,6.03,10.05,9]undecane skeleton , 1998 .

[35]  T. Deufel,et al.  Synthesis, Structure, and Properties of Twofold Bridged Sesquinorbornenes , 1998 .

[36]  S. Bott,et al.  Acid and base promoted rearrangements of Hexacyclo[11.2.1.02,12.05,10.05.15.010,14]hexadeca-6,8-diene-4,11-dione , 1996 .

[37]  S. Bott,et al.  Studies of Schmidt-Type Rearrangements of Pentacyclo[5.4.0.02,6.03,10.05,9]undecan-8-one. Unexpected Inclusion of the Huisgen Rearrangement , 1995 .

[38]  Chien-Tai Ren,et al.  Synthesis and acid-promoted ring opening of a novel cage spiro-oxetane , 1992 .

[39]  T. J. Chow,et al.  Chemistry of Cage-Shaped Polyquinane Derivatives. The Reaction of 14-Iodohexacyclo[6.6.02,6.03,13.04,11.05,9]tetradecan-10-one in Basic Solution , 1991 .

[40]  D. Oliver,et al.  Pentacyclo[5.4.0.02,6.03,10.05,9]undecylamines. Synthesis and pharmacology , 1991 .

[41]  D. Oliver,et al.  Antiviral properties of 4-amino-(D3)-trishomocubanes. , 1991, Arzneimittel-Forschung.

[42]  B. M. Lerman Skeletal rearrangements of cage compounds with medium rings , 1991 .

[43]  D. Oliver,et al.  Synthesis and biological activity of D3-trishomocubyl-4-amines. , 1991, Journal of medicinal chemistry.

[44]  A. P. Marchand Polycyclic Cage Compounds as Intermediates in Organic Synthesis , 1991 .

[45]  Chien-Tai Ren,et al.  Lewis acid promoted reactions of 11-methylenepentacyclo[5.4.0.02,6.03,10.05,9]undecan-8-one and pentacyclo[5.4.0.02,6.03,10.05,9]undecan-8-one with ethyl diazoacetate , 1990 .

[46]  P. Steel,et al.  AN UNUSUAL REARRANGEMENT OF A CAGE DIKETONE MONOTOSYLHYDRAZONE ; A NEW FRAGMENTATION OF THE PCUD SKELETON , 1990 .

[47]  T. Ogino,et al.  Novel acid-catalysed rearrangement of 4-substituted pentacyclo[5.3.0.02,5.03,9.04,8]decan-6-ones; X-ray molecular structure of 1-phenylpentacyclo[4.4.0.02,10.03,8.05,7]decan-4-one , 1990 .

[48]  A. P. Marchand Synthesis and chemistry of homocubanes, bishomocubanes, and trishomocubanes , 1989 .

[49]  B. Zwanenburg,et al.  Strained bridgehead cage alcohols and derivatives , 1989 .

[50]  A. P. Marchand,et al.  Lewis acid-promoted reactions of substituted pentacyclo[5.4.0.02,6.03,1005,9]undecane-8,11-diones with ethyl diazoacetate , 1989 .

[51]  A. P. Marchand,et al.  Boron trifluoride-mediated reaction of 1,9-dihalopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-diones with ethyl diazoacetate: a novel synthetic entry into the cyclopent[a]indene ring system , 1988 .

[52]  J. Veljković,et al.  1,7-Methanohomopentaprismane: a [2.2.1]propellane , 1988 .

[53]  A. P. Marchand,et al.  Syntheses of pentacyclo[5.4.0.02,6.03,10.05,9]undecane-4,8,11-trione, pentacyclo[6.3.0.02,6.03,10.05,9]undecane-4,7,11-trione (D3-trishomocubanetrione), and 4,4,7,7,11,11-hexanitropentacyclo[6.3.0.02,6.03,10.05,9]undecane (D3-hexanitrotrishomocubane) , 1987 .

[54]  J. Flippen-Anderson,et al.  Lewis acid promoted reaction of pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione with ethyl diazoacetate: a synthetic entry into the pentacyclo[6.5.0.04,12.05,10.09,13]tridecane ring system , 1987 .

[55]  V. Puranik,et al.  Novel polyquinanes from a caged hexacyclic [4.4.2]propellane system , 1987 .

[56]  G. Mehta,et al.  Reductive carbon-carbon cleavage in caged systems. A new general synthesis of linearly fused cis-syn-cis-triquinanes , 1985 .

[57]  K. Senokuchi,et al.  Competitive rearrangement and cycloreversion reactions of the dimethoxy-substituted Cookson's cage diketone effected with Lewis acid catalyst. , 1985 .

[58]  K. Senokuchi,et al.  Lewis acid catalyzed [2σ+2σ] cycloreversion reaction of strained cage ketones to triquinane skeletons: kinetic evidence for a large acceleration of the reaction owing to stereoelectronic requirement , 1984 .

[59]  G. Mehta,et al.  Lewis acid catalysed [2+2] cycloreversion of cookson's cage ketones under ambient conditions: model system for light energy conversion , 1984 .

[60]  G. Mehta,et al.  Polycyclic rearrangements: novel Lewis acid-catalysed rearrangement of the pentacyclo[5.4.0.02,6.03,10.05,9]undecane framework; X-ray crystal structure of 1,10-dimethylpentacyclo[5.4.0.02,6.03,10.04,8]- undecane-9,11-dione , 1983 .

[61]  M. Bhadbhade,et al.  Novel rearrangement to a pentacyclopentanoid (polyquinane) system , 1981 .

[62]  G. Mehta,et al.  A novel, versatile synthetic approach to linearly fused tricyclopentanoids via photo-thermal olefin metathesis , 1981 .

[63]  D. Oliver,et al.  1-methyl-(D3)-trishomocubane , 1980 .

[64]  P. Eaton,et al.  Tricyclo[4.2.2.01,6]decane-tricyclo[4.2.2.01,5]decane interconversions. [4.2.2]propellane rearrangements and a nonphotochemical propellane synthesis , 1980 .

[65]  K. S. Rao,et al.  On the fluxional behaviour of a polycyclic (4.4.2) propella-2,4-diene , 1980 .

[66]  G. Mehta,et al.  Polycyclic rearrangements. A novel, carbonium ion mediated, bicyclo (4.2.0) octa-2,4-diene→1,3,5-cyclooctatriene isomerisation in a propellane framework , 1979 .

[67]  G. Tolstikov,et al.  Synthesis of trishomocubane and dihomobasketane derivatives via the skeletal. Rearrangement under the action of chlorosulphonic acid , 1978 .

[68]  J. F. Liebman,et al.  Strained organic molecules , 1978 .

[69]  P. Schleyer,et al.  Syntheses and relative stability of (D3)-trishomocubane (pentacyclo[6.3.0.02,6.03,10.05,9]undecane), the pentacycloundecane stabilomer , 1977 .

[70]  R. A. Clement,et al.  Thermal and base-catalyzed isomerizations of birdcage and half-cage compounds , 1977 .

[71]  E. Smith,et al.  Syntheses of the pentacyclo[6.3.0.02,6.03,10.05,9]undecyl (trishomocubyl) and tetracyclo[6.3.0.04,11.05,9]undeca-2,6-dienyl (homohypostrophenyl) systems , 1976 .

[72]  T. J. Katz,et al.  Synthesis of prismane , 1973 .

[73]  W. G. Dauben,et al.  Synthesis and rearrangement of strained cage molecules , 1971 .

[74]  C. Bugg,et al.  An x-ray diffraction study of nonplanar carbanion structures. , 1964 .