A finite element approach for finding positive solutions of a logistic equation with a sign-changing weight function

In this article, we describe the mathematical modeling and use finite element approximation to study the existence and multiplicity of numerical positive solutions of well-known generalized logistic equation with sign-changing weight function. We investigate the range of the real parameter involved in this problem to achieve the numerical solutions and discuss the behavior of the branch of the solutions using MATLAB 7.0.

[1]  H. Amann On the Existence of Positive Solutions of Nonlinear Elliptic Boundary value Problems , 1971 .

[2]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[3]  Manuel Delgado,et al.  On the existence and multiplicity of positive solutions for some indefinite nonlinear eigenvalue problem , 2004 .

[4]  Manoj Kumar,et al.  A finite element approach for finding positive solutions of semilinear elliptic Dirichlet problems , 2009 .

[5]  Ruyun Ma,et al.  Existence and multiplicity of positive solutions of a nonlinear eigenvalue problem with indefinite weight function , 2009, Appl. Math. Comput..

[6]  John M. Neuberger A sign-changing solution for a superlinear Dirichlet problem with a reaction term nonzero at zero , 1998 .

[7]  M. Holst,et al.  MCLITE: AN ADAPTIVE MULTILEVEL FINITE ELEMENT MATLAB PACKAGE FOR SCALAR NONLINEAR ELLIPTIC EQUATIONS IN THE PLANE , 2000 .

[8]  K. J. Brown,et al.  The existence of positive solutions for a class of indefinite weight semilinear elliptic boundary value problems , 2000 .

[9]  Bongsoo Ko THE EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF INDEFINITE WEIGHT SEMILINEAR ELLIPTIC PROBLEMS WITH CRITICAL SOBOLEV EXPONENT , 2004 .

[10]  John M. Neuberger,et al.  A numerical investigation of sign-changing solutions to superlinear elliptic equations on symmetric domains , 2001 .

[11]  Mehdi Dehghan,et al.  Numerical solution of the three-dimensional advection-diffusion equation , 2004, Appl. Math. Comput..

[12]  Manoj Kumar,et al.  Numerical simulation of singularly perturbed non-linear elliptic boundary value problems using finite element method , 2012, Appl. Math. Comput..

[13]  Wendell H. Fleming,et al.  A selection-migration model in population genetics , 1975 .

[14]  K. J. Brown,et al.  Positive mountain pass solutions for a semilinear elliptic equation with a sign-changing weight function , 2006 .

[15]  Han Xiao-ling,et al.  Global bifurcation of positive solutions of a second-order periodic boundary value problem with inde , 2011 .

[16]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[17]  K. J. Brown,et al.  Stability and uniqueness of positive solutions for a semi-linear elliptic boundary value problem , 1990, Differential and Integral Equations.

[18]  Peter Hess,et al.  On some linear and nonlinear eigenvalue problems with an indefinite weight function , 1980 .

[19]  Ruyun Ma,et al.  Existence of nodal solutions of a nonlinear eigenvalue problem with indefinite weight function , 2009 .

[20]  Ghasem A. Afrouzi,et al.  A Computational Approach to Study a Logistic Equation , 2006 .

[21]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[22]  Gabriella Tarantello,et al.  On semilinear elliptic equations with indefinite nonlinearities , 1993 .

[23]  Mehdi Dehghan,et al.  Numerical procedures for a boundary value problem with a non-linear boundary condition , 2004, Appl. Math. Comput..