Thermal hysteresis proteins.

Extreme environments present a wealth of biochemical adaptations. Thermal hysteresis proteins (THPs) have been found in vertebrates, invertebrates, plants, bacteria and fungi and are able to depress the freezing point of water (in the presence of ice crystals) in a non-colligative manner by binding to the surface of nascent ice crystals. The THPs comprise a disparate group of proteins with a variety of tertiary structures and often no common sequence similarities or structural motifs. Different THPs bind to different faces of the ice crystal, and no single mechanism has been proposed to account for THP ice binding affinity and specificity. Experimentally THPs have been used in the cryopreservation of tissues and cells and to induce cold tolerance in freeze susceptible organisms. THPs represent a remarkable example of parallel and convergent evolution with different proteins being adapted for an anti-freeze role.

[1]  B. Sykes,et al.  Comparative modeling of the three‐dimensional structure of Type II antifreeze protein , 1995, Protein science : a publication of the Protein Society.

[2]  R. Kallen,et al.  Modulation of Human Muscle Sodium Channels by Intracellular Fatty Acids Is Dependent on the Channel Isoform* , 1996, The Journal of Biological Chemistry.

[3]  J. Duman,et al.  Cryoprotective effects of thermal hysteresis protein on survivorship of frozen gut cells from the freeze‐tolerant centipede Lithobius forficatus , 1995 .

[4]  T. Naidenko Cryopreservation of Crassostrea gigas oocytes, embryos and larvae using antioxidant echinochrome A and antifreeze protein AFP1 , 1997 .

[5]  C. Hew,et al.  An immune response to ice crystals in North Atlantic fishes. , 1996, European journal of biochemistry.

[6]  P. Davies,et al.  Antifreeze proteins bind independently to ice. , 1998, Biophysical journal.

[7]  P. Davies,et al.  Antifreeze protein pseudogenes. , 1992, Gene.

[8]  C. Hew,et al.  The ice-binding site of Atlantic herring antifreeze protein corresponds to the carbohydrate-binding site of C-type lectins. , 1998, Biochemistry.

[9]  C. Hew,et al.  The role of CCAAT/enhancer-binding protein alpha and a protein that binds to the activator-protein-1 site in the regulation of liver-specific expression of the winter flounder antifreeze protein gene. , 1997, European journal of biochemistry.

[10]  C. Cheng,et al.  Evolution of the diverse antifreeze proteins. , 1998, Current opinion in genetics & development.

[11]  C. Andorfer,et al.  Enhancement of insect antifreeze protein activity by solutes of low molecular mass. , 1998, The Journal of experimental biology.

[12]  B. Rubinsky,et al.  Hypothermic protection--a fundamental property of "antifreeze" proteins. , 1991, Biochemical and biophysical research communications.

[13]  B. Sykes,et al.  Structure‐function relationship in the globular type III antifreeze protein: Identification of a cluster of surface residues required for binding to ice , 1994, Protein science : a publication of the Protein Society.

[14]  F. Sicheri,et al.  Identification of the ice-binding surface on a type III antifreeze protein with a "flatness function" algorithm. , 1998, Biophysical journal.

[15]  G. Warren,et al.  Properties of engineered antifreeze peptides , 1993, FEBS letters.

[16]  J. Smith,et al.  Enzyme leakage during cryopreservation of ram spermatozoa , 1996 .

[17]  C. Hew,et al.  Protein interaction with ice. , 1992, European journal of biochemistry.

[18]  W. Block,et al.  Presence of thermal hysteresis producing antifreeze proteins in the antarctic mite, Alaskozetes antarcticus , 1989 .

[19]  K. Muldrew,et al.  ANTIFREEZE PROTEINS INDUCE INTRACELLULAR NUCLEATION , 1996 .

[20]  F. Sicheri,et al.  Single crystals of a type III antifreeze polypeptide from ocean pout. , 1994, Journal of Molecular Biology.

[21]  B. Rubinsky,et al.  Freezing of mammalian livers with glycerol and antifreeze proteins. , 1994, Biochemical and biophysical research communications.

[22]  Michael J. Kuiper,et al.  β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect , 2000, Nature.

[23]  P. Davies,et al.  Low temperature persistence of type I antifreeze protein is mediated by cold‐specific mRNA stability , 1995, FEBS letters.

[24]  P. Davies,et al.  Effects of antifreeze proteins on red blood cell survival during cryopreservation. , 1996, The Journal of experimental biology.

[25]  G. Prisco Life Under Extreme Conditions , 1991, Springer Berlin Heidelberg.

[26]  R. Laursen,et al.  Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis , 1997, FEBS letters.

[27]  W. Gronwald,et al.  The ice-binding site of sea raven antifreeze protein is distinct from the carbohydrate-binding site of the homologous C-type lectin. , 1998, Biochemistry.

[28]  J. Duman,et al.  Adaptations of Insects to Subzero Temperatures , 1991, The Quarterly Review of Biology.

[29]  T. Cross,et al.  Brooding in the intertidal barnacles Chthamalus stellatus (Poli) and Chthalamus montagui Southward in south-western Ireland , 1992 .

[30]  R. Laursen,et al.  Structure-function relationships in an antifreeze polypeptide. The role of neutral, polar amino acids. , 1992, The Journal of biological chemistry.

[31]  J. Raymond,et al.  Adsorption inhibition as a mechanism of freezing resistance in polar fishes. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. Devries,et al.  Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  G. Fletcher,et al.  Skin-type Antifreeze Protein from the Shorthorn Sculpin,Myoxocephalus scorpius , 1998, The Journal of Biological Chemistry.

[34]  P. Davies,et al.  The antifreeze potential of the spruce budworm thermal hysteresis protein , 1997, Nature Biotechnology.

[35]  B. Sykes,et al.  Disulfide bond mapping and structural characterization of spruce budworm antifreeze protein. , 1998, European journal of biochemistry.

[36]  Z. Jia,et al.  Structural basis for the binding of a globular antifreeze protein to ice , 1996, Nature.

[37]  G. Fletcher,et al.  FISH SKIN: AN EFFECTIVE BARRIER TO ICE CRYSTAL PROPAGATION , 1992 .

[38]  X. Liu,et al.  Biosynthetic production of type II fish antifreeze protein: fermentation by Pichia pastoris , 1997, Applied Microbiology and Biotechnology.

[39]  R. Mitra,et al.  A low temperature induced apoplastic protein isolated from Arachis hypogaea. , 1998, Phytochemistry.

[40]  Bernard R. Glick,et al.  Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 , 1998 .

[41]  P. Davies,et al.  Mixing antifreeze protein types changes ice crystal morphology without affecting antifreeze activity , 1995, FEBS letters.

[42]  R. Schneppenheim,et al.  Frostschutz-Glykoproteine bei Mytilus edulis? , 1976 .

[43]  C. Hew,et al.  Fish antifreeze proteins: physiology and evolutionary biology , 1988 .

[44]  M. Marahiel,et al.  Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures , 1992, Journal of bacteriology.

[45]  B. Rubinsky,et al.  Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins. , 1992, Biochemical and biophysical research communications.

[46]  J. Duman Thermal hysteresis antifreeze proteins in the midgut fluid of overwintering larvae of the beetle Dendroides canadensis , 1984 .

[47]  K. E. Zachariassen,et al.  Antifreeze activity in the cerambycid beetle Rhagium inquisitor , 1999, Journal of Comparative Physiology B.

[48]  J. Duman Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum dulcamara. , 1994, Biochimica et biophysica acta.

[49]  B. Rubinsky,et al.  Kinetics of antifreeze protein‐induced ice growth inhibition , 1997, FEBS letters.

[50]  C. Hew,et al.  Structure of an antifreeze polypeptide from the sea raven. Disulfide bonds and similarity to lectin-binding proteins. , 1992, The Journal of biological chemistry.

[51]  B. Sykes,et al.  NMR STRUCTURAL STUDIES ON ANTIFREEZE PROTEINS , 1998 .

[52]  K. E. Zachariassen,et al.  Antifreeze effect of thermal hysteresis agents protects highly supercooled insects , 1982, Nature.

[53]  T. N. Hansen,et al.  Calorimetric analysis of antifreeze glycoproteins of the polar fish, Dissostichus mawsoni. , 1991, Biochimica et biophysica acta.

[54]  A. Arav,et al.  Hypothermic storage of sheep embryos with antifreeze proteins: development in vitro and in vivo. , 1997, Theriogenology.

[55]  D. Hincha,et al.  Cryotoxicity of antifreeze proteins and glycoproteins to spinach thylakoid membranes--comparison with cryotoxic sugar acids. , 1993, Biochimica et biophysica acta.

[56]  Jen-Leih Wu,et al.  Effect of Antifreeze Protein on Cold Tolerance in Juvenile Tilapia (Oreochromis mossambicus Peters) and Milkfish (Chanos chanos Forsskal) , 1998 .

[57]  K. Horwath,et al.  Characterization of primary cell cultures derived from fat body of the beetle, Tenebrio molitor, and the immunolocalization of a thermal hysteresis protein in vitro , 1994 .

[58]  D. Pignol,et al.  Crystal structure of human lithostathine, the pancreatic inhibitor of stone formation. , 1996, The EMBO journal.

[59]  J. A. Ramsay The rectal complex of the mealworm Tenebrio molitor, L. (Coleoptera, Tenebrionidae) , 1964, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[60]  C. Knight,et al.  Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. , 1991, Biophysical journal.

[61]  J. Verbakel,et al.  Expression and secretion of antifreeze peptides in the yeast Saccharomyces cerevisiae , 1995, Yeast.

[62]  P. Lillford,et al.  A carrot leucine-rich-repeat protein that inhibits ice recrystallization. , 1998, Science.

[63]  Q. Ye,et al.  The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice. , 1998, Journal of molecular biology.

[64]  Y. Yeh,et al.  Antifreeze Proteins: Structures and Mechanisms of Function. , 1996, Chemical reviews.

[65]  D. Parmelee,et al.  Molecular characterization and sequencing of antifreeze proteins from larvae of the beetle Dendroides canadensis , 1998, Journal of Comparative Physiology B.

[66]  K. Mellanby The Effect of Atmospheric Humidity on the Metabolism of the Fasting Mealworm (Tenebrio molitor L., Coleoptera) , 1932 .

[67]  C. Hew,et al.  The antifreeze protein genes of the winter flounder, Pleuronectus americanus, are differentially regulated in liver and non-liver tissues. , 1995, Biochemical and biophysical research communications.

[68]  C. Hew,et al.  Production of germline transgenic Pacific salmonids with dramatically increased growth performance , 1995 .

[69]  J. Duman,et al.  Enhancement of insect antifreeze protein activity by antibodies. , 1991, Biochimica et biophysica acta.

[70]  Makoto Tanaka,et al.  Characteristics of ice slurry containing antifreeze protein for ice storage applications , 1997 .

[71]  T. N. Hansen,et al.  Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[72]  P. Thibault,et al.  A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor. , 1999, Biochemistry.

[73]  K. Pihakaski-Maunsbach,et al.  Antifreeze proteins in winter rye , 1997 .

[74]  A. Trounson,et al.  Fertilization and early embryology: Evaluation of propanediol, ethylene glycol, sucrose and antifreeze proteins on the survival of slow-cooled mouse pronuclear and 4-cell embryos , 1995 .

[75]  P. Pudney,et al.  Phytochemistry: Heat-stable antifreeze protein from grass , 2000, Nature.

[76]  C. Hew,et al.  Biochemistry of fish antifreeze proteins , 1990, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[77]  John G. Duman,et al.  Thermal Hysteresis Protein Activity in Bacteria, Fungi, and Phylogenetically Diverse Plants , 1993 .

[78]  M. Griffith,et al.  Antifreeze Proteins in Winter Rye Are Similar to Pathogenesis-Related Proteins , 1995, Plant physiology.

[79]  Zongchao Jia,et al.  Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein , 2000, Nature.

[80]  R. Hodges,et al.  A natural variant of type I antifreeze protein with four ice‐binding repeats is a particularly potent antifreeze , 1996, Protein science : a publication of the Protein Society.

[81]  F. Castellino,et al.  Mapping of disulfide bridges in antifreeze proteins from overwintering larvae of the beetle Dendroides canadensis. , 1998, Biochemistry.

[82]  J. Madura,et al.  Interactions of the D- and L-Forms of Winter Flounder Antifreeze Peptide with the {201} Planes of Ice , 1994 .

[83]  A. Chakrabartty,et al.  The effect of enhanced α‐helicity on the activity of a winter flounder antifreeze polypeptide , 1991 .

[84]  Y. Inoue,et al.  N.m.r. study of interaction between sugar and peptide moieties in mucin-type model glycopeptides. , 1992, International journal of biological macromolecules.

[85]  Y. Liou,et al.  Hyperactive antifreeze protein from beetles , 1997, Nature.

[86]  Jeffry D. Madura,et al.  Modeling Studies of Binding of Sea Raven Type II Antifreeze Protein to Ice , 1997, J. Chem. Inf. Comput. Sci..

[87]  C. Knight,et al.  Valine substituted winter flounder `antifreeze': preservation of ice growth hysteresis , 1998, FEBS letters.

[88]  F. Sicheri,et al.  Structure Determination of a Lone α‐Helical Antifreeze Protein from Winter Flounder , 1996 .

[89]  C. Hew,et al.  Skin Antifreeze Protein Genes of the Winter Flounder, Pleuronectes americanus, Encode Distinct and Active Polypeptides without the Secretory Signal and Prosequences (*) , 1996, The Journal of Biological Chemistry.

[90]  R. Hodges,et al.  A diminished role for hydrogen bonds in antifreeze protein binding to ice. , 1997, Biochemistry.

[91]  R. Laursen,et al.  Structure-Function Relationships in a Type I Antifreeze Polypeptide , 1998, The Journal of Biological Chemistry.

[92]  C. Hew,et al.  Studies of a putative ice‐binding motif in winter flounder skin‐type anti‐freeze polypeptide , 1999, FEBS letters.

[93]  M. Griffith,et al.  Extraction and Isolation of Antifreeze Proteins from Winter Rye (Secale cereale L.) Leaves , 1994, Plant physiology.

[94]  W. Gronwald,et al.  The solution structure of type II antifreeze protein reveals a new member of the lectin family. , 1998, Biochemistry.

[95]  A. Devries,et al.  Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[96]  X. Wang,et al.  Antifreeze peptide heterogeneity in an antarctic eel pout includes an unusually large major variant comprised of two 7 kDa type III AFPs linked in tandem. , 1995, Biochimica et biophysica acta.

[97]  W. Doolittle,et al.  Origin of antifreeze protein genes: a cool tale in molecular evolution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[98]  C. Hew,et al.  Expression and characterization of an active and thermally more stable recombinant antifreeze polypeptide from ocean pout, Macrozoarces americanus, in Escherichia coli: improved expression by the modification of the secondary structure of the mRNA. , 1991, Protein engineering.

[99]  M. Griffith,et al.  Antifreeze protein accumulation in freezing-tolerant cereals , 1997 .

[100]  Y. Jiang Transgenic fish — gene transfer to increase disease and cold resistance , 1993 .

[101]  M. Griffith,et al.  Antifreeze proteins and their potential use in frozen foods. , 1995, Biotechnology advances.

[102]  L. Bülow,et al.  Artificial antifreeze proteins can improve NaCl tolerance when expressed in E. coli , 1994, FEBS letters.

[103]  K. Klimpel,et al.  Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. , 1992, The Journal of biological chemistry.

[104]  C. Hew,et al.  Transgenic salmon: tailoring the genome for food production , 1995 .

[105]  Liangbiao Chen,et al.  Evolution of an antifreeze glycoprotein , 1999, Nature.

[106]  C. Knight,et al.  Plant thermal hysteresis proteins. , 1992, Biochimica et biophysica acta.

[107]  R. Laursen,et al.  Cloning and sequencing of cDNA encoding the LS-12 antifreeze protein in the longhorn sculpin, Myoxocephalus octodecimspinosis. , 1998, Biochimica et biophysica acta.

[108]  B. Moffatt,et al.  Antifreeze protein produced endogenously in winter rye leaves. , 1992, Plant physiology.

[109]  R. Hodges,et al.  Binding of an Oligopeptide to a Specific Plane of Ice* , 1998, The Journal of Biological Chemistry.

[110]  F. Sicheri,et al.  Ice-binding structure and mechanism of an antifreeze protein from winter flounder , 1995, Nature.

[111]  B. Rubinsky,et al.  Effect of antifreeze proteins on frozen primary prostatic adenocarcinoma cells. , 1997, Urology.

[112]  B. Rubinsky,et al.  Chemical adjuvant cryosurgery with antifreeze proteins , 1997, Journal of surgical oncology.

[113]  C. Knight,et al.  Nonequilibrium antifreeze peptides and the recrystallization of ice. , 1995, Cryobiology.

[114]  G. Fletcher,et al.  Winter Flounder Antifreeze Protein Improves the Cold Hardiness of Plant Tissues , 1989 .

[115]  P. Davies,et al.  Antifreeze protein does not confer cold tolerance to transgenic Drosophila melanogaster. , 1995, Cryobiology.

[116]  W. Gronwald,et al.  NMR characterization of side chain flexibility and backbone structure in the type I antifreeze protein at near freezing temperatures. , 1996, Biochemistry.

[117]  V. Ananthanarayanan,et al.  Ca2+-dependent Antifreeze Proteins , 1996, The Journal of Biological Chemistry.

[118]  B. Sykes,et al.  Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction. , 1996, Structure.