1,3-diethynylallenes : Stable monomers, length-defined oligomers, asymmetric synthesis, and optical resolution

A series of differently substituted 1,3-diethynylallenes (DEAs) have been synthesized, confirming that the previously introduced construction protocols tolerate a variety of functional groups. The new DEAs bear at least one polar group to facilitate enantiomer separations on chiral stationary phases and to allow further functionalization. They are thermally and environmentally stable compounds since bulky substituents next to the cumulene moiety suppress the tendency to undergo [2+2] cyclodimerization. A series of length-defined oligomers were obtained as mixtures of stereoisomers by oxidative coupling of a monomeric DEA under Glaser–Hay conditions. The electronic absorption data indicate a lack of extended π-electron conjugation across the oligomeric backbone due to the orthogonality of the allenic π-systems. Remarkably, even complex mixtures of stereoisomers only yield one single set of NMR signals, which underlines the low stereodifferentiation in acyclic allenoacetylenic structures. Optical resolution of DEAs represents an amazing challenge, and preliminary results on the analytical level are reported. Asymmetric synthesis by Pd-mediated SN2′-type cross-coupling of an alkyne to an optically pure bispropargylic precursor opens another promising route to optically active allenes with stereoselectivities currently reaching up to 78 % ee. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

[1]  K. Tomioka,et al.  Enantioselective Synthesis of Allenes , 2008 .

[2]  Masahiro Yoshida,et al.  Palladium-catalyzed diastereoselective coupling of propargylic oxiranes with terminal alkynes. , 2007, Organic letters.

[3]  Yong‐Gui Zhou,et al.  Iron porphyrin-catalyzed olefination of ketenes with diazoacetate for the enantioselective synthesis of allenes. , 2007, Journal of the American Chemical Society.

[4]  Tetsuaki Tanaka,et al.  Stereodivergent synthesis of 1,4-bifunctional compounds by regio- and diastereoselective Pd-catalyzed allylic substitution reaction , 2006 .

[5]  Tamotsu Takahashi,et al.  Palladium-catalyzed preparation of vinylallenes from 2-bromo-1,3,5-trienes via an alkylidene-pi-allylpalladium-mediated formal SN2" pathway. , 2006, Organic letters.

[6]  S. Danishefsky,et al.  A total synthesis of xestodecalactone a and proof of its absolute stereochemistry: interesting observations on dienophilic control with 1,3-disubstituted nonequivalent allenes. , 2006, Journal of the American Chemical Society.

[7]  Yong Tang,et al.  Enantioselective synthesis of allenic esters via an ylide route. , 2006, Chemical communications.

[8]  R. Hsung,et al.  Synthesis of chiral allenes from ynamides through a highly stereoselective Saucy–Marbet rearrangement , 2006 .

[9]  F. Diederich,et al.  First asymmetric synthesis of a differentially silyl-protected tris(alkynyl)methyl methyl ether. , 2006, Organic & biomolecular chemistry.

[10]  L. Sarandeses,et al.  Palladium-catalyzed cross-coupling reaction of triorganoindium reagents with propargylic esters. , 2006, Organic letters.

[11]  G. Molander,et al.  Palladium(0)-catalyzed synthesis of chiral ene-allenes using alkenyl trifluoroborates. , 2006, The Journal of organic chemistry.

[12]  Tamotsu Takahashi,et al.  Vinyl ketones to allenes: preparation of 1,3-dien-2-yl triflates and their application in Pd-catalyzed reactions with soft nucleophiles. , 2005, Organic letters.

[13]  I. Marek,et al.  New tandem Zn-promoted Brook rearrangement/ene-allene carbocyclization reactions. , 2005, Organic letters.

[14]  Lei Liu,et al.  Synthesis of new C2-Symmetrical bissulfonamide ligands and application in the enantioselective addition of alkynylzinc to aldehydes and ketones , 2005 .

[15]  L. Hegedus,et al.  Boron-Mediated Stereoselective Syntheses of γ,γ-Disubstituted Allenamides , 2005 .

[16]  P. Seiler,et al.  Aufbau formstabiler chiraler alleno‐acetylenischer Makrocyclen und Cyclophane über Acetylenkupplungen mit 1,3‐Diethinylallenen , 2005 .

[17]  Fan Wu,et al.  Sulfamide-amine alcohol catalyzed enantioselective alkynylation of aromatic ketones , 2005 .

[18]  M. Ogasawara,et al.  A new route to methyl (R,E)-(-)-tetradeca-2,4,5-trienoate (pheromone of Acanthoscelides obtectus) utilizing a palladium-catalyzed asymmetric allene formation reaction. , 2005, The Journal of organic chemistry.

[19]  Matthew D. Clay and,et al.  Acetylenic Allenophanes: An Asymmetric Synthesis of a Bis(alleno)-bis(butadiynyl)-meta-cyclophane† , 2005 .

[20]  Lei Liu,et al.  Enantioselective Alkynylation of Aromatic Ketones Catalyzed by New Chiral Oxazolidine Ligands , 2005 .

[21]  N. Krause,et al.  Synthesis of allenes with organometallic reagents , 2004 .

[22]  Lei Liu,et al.  Enantioselective alkynylation of aromatic ketones promoted by (S)-phenylalanine-derived β-amino alcohol , 2004 .

[23]  A. Hashmi,et al.  Modern Allene Chemistry , 2004 .

[24]  Pei-Hua Liu,et al.  Tetrabromobutatriene: completing the perhalocumulene series. , 2004, Organic letters.

[25]  N. Krause,et al.  Synthese und Eigenschaften allenischer Natur‐ und Wirkstoffe , 2004 .

[26]  Kazuya Inoue,et al.  Rhodium-catalyzed asymmetric 1,6-addition of aryltitanates to enynones giving axially chiral allenes. , 2004, Organic letters.

[27]  Diego J. Ramón,et al.  Chirale tertiäre Alkohole durch katalytische enantioselektive Addition von unreaktiven Zinkreagentien an schwach elektrophile Ketone , 2004 .

[28]  R. Hsung,et al.  Highly stereoselective Saucy-Marbet rearrangement using chiral ynamides. Synthesis of highly substituted chiral homoallenyl alcohols. , 2003, Organic letters.

[29]  M. Calaza,et al.  Highly stereoselective anti SN2' substitutions of (Z)-allylic pentafluorobenzoates with polyfunctionalized zinc-copper reagents. , 2003, Organic letters.

[30]  Y. Kikuchi,et al.  Synthesis and properties of novel acid-sensitive conjugated allene polymers , 2003 .

[31]  M. Calaza,et al.  Highly anti-selective SN2' substitutions of chiral cyclic 2-iodo-allylic alcohol derivatives with mixed zinc-copper reagents. , 2003, Organic letters.

[32]  M. Ogasawara,et al.  Palladium-catalyzed asymmetric synthesis of axially chiral (allenylmethyl)silanes and chirality transfer to stereogenic carbon centers in S(E)' reactions. , 2003, Organic letters.

[33]  P. Knochel,et al.  Carbocupration/Zinc Carbenoid Homologation and β‐Elimination Reactions for a New Synthesis of Allenes − Application to the Enantioselective Synthesis of Chiral Allenes by Deracemization of sp3‐Organometallic Derivatives , 2002 .

[34]  H. Shirakawa,et al.  The First Conjugated Allene Polymer , 2002 .

[35]  F. Diederich,et al.  1,3-Diethynylallenes: Carbon-Rich Modules for Three-Dimensional Acetylenic Scaffolding , 2002 .

[36]  B. Jiang,et al.  Highly enantioselective alkynylation of alpha-keto ester: an efficient method for constructing a chiral tertiary carbon center. , 2002, Organic letters.

[37]  F. Diederich,et al.  Poly(triacetylene) Oligomers: Conformational Analysis by X‐Ray Crystallography and Synthesis of a 17.8‐nm‐Long Monodisperse 24‐mer , 2001 .

[38]  M. Kikuchi,et al.  Stereoselective Total Synthesis of Zaragozic Acid A based on an Acetal [1,2] Wittig Rearrangement , 2000 .

[39]  H. Shirakawa,et al.  Synthesis of a soluble conjugated cumulene polymer: poly(biphenyl‐4,4′‐diyl‐1,4‐bis(4‐dodecyloxyphenyl)‐buta‐1,2,3‐triene‐1,4‐diyl) , 2000 .

[40]  Synthese des ersten [34]Allenophans: 1,3,10,12,19,21,28,30-Octamethyl[3.3.3.3]paracyclophan-1,2,10,11,19,20,28,29-octaen , 1999 .

[41]  Ikuo Kinoshita,et al.  Syntheses and properties of conjugated polymers with cumulenic bond in the main chain , 1999 .

[42]  Paul J. Reider,et al.  Eine neue, hochenantioselektive Alkinylierung von Ketonen, die durch chirale Zinkaminoalkoxide gesteuert wird , 1999 .

[43]  James R. Moore,et al.  Practical asymmetric synthesis of Efavirenz (DMP 266), an HIV-1 reverse transcriptase inhibitor , 1998 .

[44]  W. H. Pirkle,et al.  Predictable chromatographic separations of enantiomers: aryl allenic acids and their derivatives , 1997 .

[45]  S. Roberts,et al.  Synthesis of optically active allenes using tandem enzyme and palladium-catalysed reactions , 1997 .

[46]  R. K. Meyer,et al.  Molecular second hyperpolarizability measured in cumulene-containing polymers , 1997 .

[47]  F. Diederich,et al.  Towards the Synthesis of Tetraethynylallene , 1996 .

[48]  Maria Cristina Burla,et al.  SIR92 – a program for automatic solution of crystal structures by direct methods , 1994 .

[49]  J. Gawroński,et al.  Chiral carbenoids: their formation and reactions , 1993 .

[50]  N. Krause,et al.  Enantioseparation of allenes by liquid chromatography , 1991 .

[51]  J. Tsuji,et al.  The palladium-catalyzed reactions of 2-alkynyl carbonates with terminal acetylenes. A new synthetic method for 1,2-dien-4-ynes , 1991 .

[52]  S. Nespurek,et al.  Oligomers with cumulenic sequences in the main chain , 1990 .

[53]  K. Nakamura,et al.  Separation of the stereoisomers of an allenic E-type prostaglandin. , 1988, Journal of chromatography.

[54]  C. J. Elsevier,et al.  Anti-stereoselectivity in the palladium(0)-catalyzed conversion of propargylic esters into allenes by phenylzinc chloride , 1983 .

[55]  P. W. Ford,et al.  Rotationsbarriere in 1,2‐Dienen; Resonanzenergie des Allyl‐Radikals , 1974 .

[56]  H. Mosher,et al.  Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and .alpha.-methoxy-.alpha.-trifluoromethylphenylacetate (MTPA) esters , 1973 .

[57]  J. H. V. Hoff,et al.  La chimie dans l'espace , 1875 .