Vertical-cavity surface-emitting lasers for data communication and sensing

Vertical-cavity surface-emitting lasers (VCSELs) are the ideal optical sources for data communication and sensing. In data communication, large data rates combined with excellent energy efficiency and temperature stability have been achieved based on advanced device design and modulation formats. VCSELs are also promising sources for photonic integrated circuits due to their small footprint and low power consumption. Also, VCSELs are commonly used for a wide variety of applications in the consumer electronics market. These applications range from laser mice to three-dimensional (3D) sensing and imaging, including various 3D movement detections, such as gesture recognition or face recognition. Novel VCSEL types will include metastructures, exhibiting additional unique properties, of largest importance for next-generation data communication, sensing, and photonic integrated circuits.

[1]  B. E. Hammons,et al.  Advances in selective wet oxidation of AlGaAs alloys , 1997 .

[2]  Milton Feng,et al.  Energy efficient microcavity lasers with 20 and 40 Gb/s data transmission , 2011 .

[3]  H. Kuo,et al.  CW lasing of current injection blue GaN-based vertical cavity surface emitting laser , 2008 .

[4]  Wanhua Zheng,et al.  Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence , 2010 .

[5]  D Bimberg,et al.  25 Gbps direct modulation and 10 km data transmission with 1310 nm waveband wafer fused VCSELs. , 2016, Optics express.

[6]  Shanhui Fan,et al.  Progress in 2D photonic crystal Fano resonance photonics , 2014 .

[7]  G. A. Vawter,et al.  Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD , 1991, IEEE Photonics Technology Letters.

[8]  Kenichi Iga,et al.  Vertical cavity surface-emitting laser with an AlGaAs/AlAs Bragg reflector , 1988 .

[9]  Michael Miller,et al.  Integrated high power VCSEL systems , 2016, SPIE LASE.

[10]  B. Tell,et al.  TEMPERATURE-DEPENDENCE OF GAAS-ALGAAS VERTICAL CAVITY SURFACE EMITTING LASERS , 1992 .

[11]  Alex Mutig,et al.  40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL , 2010 .

[12]  H. Lin,et al.  VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings , 2004 .

[13]  Yong-Hee Lee,et al.  Square-lattice photonic-crystal vertical-cavity surface-emitting lasers. , 2004, Optics express.

[14]  Johan S. Gustavsson,et al.  High-Speed, Low-Current-Density 850 nm VCSELs , 2009 .

[15]  Ziyang Zhang,et al.  Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control , 2011 .

[16]  N. Ledentsov,et al.  Anti-waveguiding vertical-cavity surface-emitting laser at 850 nm: From concept to advances in high-speed data transmission. , 2018, Optics express.

[17]  M. Amann,et al.  Polarization Control in Buried Tunnel Junction VCSELs Using a Birefringent Semiconductor/Dielectric Subwavelength Grating , 2010, IEEE Photonics Technology Letters.

[18]  H. Uenohara,et al.  An 850-nm InAlGaAs strained quantum-well vertical-cavity surface-emitting laser grown on GaAs (311)B substrate with high-polarization stability , 2000, IEEE Photonics Technology Letters.

[19]  Johan S. Gustavsson,et al.  High-speed 850 nm VCSELs operating error free up to 57 Gbit/s , 2013 .

[20]  Milton Feng,et al.  850 nm oxide-confined VCSELs with 50 Gb/s error-free transmission operating up to 85 °C , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[21]  Marianne Bigot-Astruc,et al.  180 Gbps PAM4 VCSEL transmission over 300m wideband OM4 fibre , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[22]  Guido Giuliani,et al.  Laser diode self-mixing technique for sensing applications , 2002 .

[23]  Fumio Koyama,et al.  Recent advances in VCSEL photonics , 2006, 16th Opto-Electronics and Communications Conference.

[24]  H. J. Unold,et al.  Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory , 2003 .

[25]  L. Coldren,et al.  Low threshold planarized vertical-cavity surface-emitting lasers , 1990, IEEE Photonics Technology Letters.

[26]  Martin Grabherr New applications boost VCSEL quantities: recent developments at Philips , 2015, Photonics West - Optoelectronic Materials and Devices.

[27]  Aleksandar Nesic,et al.  Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding , 2018, Optica.

[28]  Hui Li,et al.  Energy efficient 40 Gbit/s transmission with 850 nm VCSELs at 108 fJ/bit dissipated heat , 2013 .

[29]  Il-Sug Chung,et al.  Speed enhancement in VCSELs employing grating mirrors , 2013, Photonics West - Optoelectronic Materials and Devices.

[30]  James A. Lott,et al.  Impact of Photon Lifetime on the Temperature Stability of 50 Gb/s 980 nm VCSELs , 2016, IEEE Photonics Technology Letters.

[31]  Hideo Nakayama,et al.  VCSEL array-based light exposure system for laser printing , 2008, SPIE OPTO.

[32]  C. Chang-Hasnain,et al.  Theoretical analysis of subwavelength high contrast grating reflectors. , 2010, Optics express.

[33]  Joonhee Lee,et al.  Polarization-dependent GaN surface grating reflector for short wavelength applications. , 2009, Optics express.

[34]  Ad Rommers,et al.  A miniaturized multidirectional optical motion sensor and input device based on laser self-mixing , 2002 .

[35]  Hui Li,et al.  56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s , 2012 .

[36]  H. Hatakeyama,et al.  1.1-$\mu$m-Range High-Speed Tunnel Junction Vertical-Cavity Surface-Emitting Lasers , 2007, IEEE Photonics Technology Letters.

[37]  M Ilegems,et al.  Multilayer GaAs-Al(0.3)Ga(0.7)As dielectric quarter wave stacks grown by molecular beam epitaxy. , 1975, Applied optics.

[38]  F. Koyama,et al.  Microcavity GalaAs/GaAs surface-emitting laser with Ith = 6 mA , 1987 .

[39]  Gunther Roelkens,et al.  Vertical‐Cavity Silicon‐Integrated Laser with In‐Plane Waveguide Emission at 850 nm , 2018 .

[40]  Johan S. Gustavsson,et al.  High-speed 850 nm VCSELs with 28 GHz modulation bandwidth , 2012, CLEO 2015.

[41]  R. Orta,et al.  3-D Vectorial Optical Model for High-Contrast Grating Vertical-Cavity Surface-Emitting Lasers , 2013, IEEE Journal of Quantum Electronics.

[42]  Hao-Chung Kuo,et al.  Very High Bit-Rate Distance Product Using High-Power Single-Mode 850-nm VCSEL With Discrete Multitone Modulation Formats Through OM4 Multimode Fiber , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[43]  I. Melngailis LONGITUDINAL INJECTION‐PLASMA LASER OF InSb , 1965 .

[44]  R Baets,et al.  Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms. , 2015, Optics express.

[45]  C. Chang-Hasnain,et al.  A surface-emitting laser incorporating a high-index-contrast subwavelength grating , 2007 .

[46]  Milton Feng,et al.  850 nm Oxide-VCSEL With Low Relative Intensity Noise and 40 Gb/s Error Free Data Transmission , 2014, IEEE Photonics Technology Letters.

[47]  Hideyuki Nasu,et al.  Short-Reach Optical Interconnects Employing High-Density Parallel-Optical Modules , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[48]  Hui Li,et al.  Error-free 46 Gbit/s operation of oxide-confined 980 nm VCSELs at 85°C , 2014 .

[49]  James A. Lott,et al.  Electrically-Injected VCSELs with a Composite Monolithic High Contrast Grating and Distributed Bragg Reflector Coupling Mirror , 2018, 2018 IEEE International Semiconductor Laser Conference (ISLC).

[50]  C. Chang-Hasnain,et al.  A nanoelectromechanical tunable laser , 2008 .

[51]  Takafumi Yao,et al.  Distributed Feed Back Surface Emitting Laser Diode with Multilayered Heterostructure , 1984 .

[52]  D. P. Worland,et al.  Long-Wavelength VCSEL Using High-Contrast Grating , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[53]  Alexander V. Rylyakov,et al.  A 50 Gb/s NRZ Modulated 850 nm VCSEL Transmitter Operating Error Free to 90 °C , 2015, Journal of Lightwave Technology.

[54]  M. Bugajski,et al.  Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror. , 2015, Optics express.

[55]  Jason Geng,et al.  Structured-light 3D surface imaging: a tutorial , 2011 .

[56]  M. Amann,et al.  Laser ranging: a critical review of usual techniques for distance measurement , 2001 .

[57]  R. Michalzik,et al.  Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[58]  B. Tell,et al.  Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85 mu m , 1990 .

[59]  Larry A. Coldren,et al.  High-efficiency, high-speed VCSELs with deep oxidation layers , 2006 .

[60]  Jin-Wei Shi,et al.  Oxide-Relief and Zn-Diffusion 850-nm Vertical-Cavity Surface-Emitting Lasers With Extremely Low Energy-to-Data-Rate Ratios for 40 Gbit/s Operations , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[61]  Garry Berkovic,et al.  Optical methods for distance and displacement measurements , 2012 .

[62]  Akihiro Matsutani,et al.  Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs , 2014 .

[63]  R. Magnusson,et al.  Physical basis for wideband resonant reflectors. , 2008, Optics express.

[64]  David Hillerkuss,et al.  Photonic Wire Bonds for Terabit/s Chip-to-Chip Interconnects , 2011, 1111.0651.

[65]  Jack L. Jewell,et al.  Room-Temperature Continuous-Wave Vertical-Cavity Single-Quantum-Well Microlaser Diodes , 1989 .

[66]  Chuan Xie,et al.  The next generation high data rate VCSEL development at SEDU , 2013, Photonics West - Optoelectronic Materials and Devices.

[67]  Yong-Hee Lee,et al.  Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers , 2003 .

[68]  Chee Yee Kwok,et al.  Fabrication of smooth 45° micromirror using TMAH low concentration solution with NCW-601A surfactant on <100> silicon , 2007, SPIE Micro + Nano Materials, Devices, and Applications.

[69]  Hui Li,et al.  Temperature-Stable 980-nm VCSELs for 35-Gb/s Operation at 85 °C With 139-fJ/bit Dissipated Heat , 2014, IEEE Photonics Technology Letters.

[70]  Risto Myllylä,et al.  Imaging distance measurements using TOF lidar , 1998 .

[71]  James A. Lott,et al.  35 GHz Bandwidth with Directly Current Modulated 980 nm Oxide Aperture Single Cavity VCSELs , 2018, 2018 IEEE International Semiconductor Laser Conference (ISLC).

[72]  Fumio Koyama,et al.  Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings. , 2010, Optics express.

[73]  A. Kasukawa,et al.  Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs for “Green” Optical Interconnection , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[74]  Mrt Tan,et al.  1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate , 2017 .

[75]  A. R. Sugg,et al.  Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .

[76]  Salim Boutami,et al.  Compact and polarization controlled 1.55μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror , 2007 .

[77]  P. Westbergh,et al.  Advances in VCSELs for Communication and Sensing , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[78]  Varghese A. Thomas,et al.  4λ × 100Gbps VCSEL PAM-4 transmission over 105m of wide band multimode fiber , 2017, OFC.

[79]  Holger Moench,et al.  VCSEL-based miniature laser-Doppler interferometer , 2008, SPIE OPTO.

[80]  Il-Sug Chung,et al.  Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics , 2016, Scientific Reports.

[81]  P. Westbergh,et al.  High-Speed Oxide Confined 850-nm VCSELs Operating Error-Free at 40 Gb/s up to 85$^{\circ}{\rm C}$ , 2013, IEEE Photonics Technology Letters.

[82]  Yisu Yang,et al.  Integration of an O-band VCSEL on silicon photonics with polarization maintenance and waveguide coupling. , 2017, Optics express.

[83]  A. N. Al-Omari,et al.  Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth , 2004, IEEE Photonics Technology Letters.

[84]  Roger King,et al.  High volume production of single-mode VCSELs , 2006, SPIE OPTO.

[85]  R Schmogrow,et al.  Photonic wire bonding: a novel concept for chip-scale interconnects. , 2012, Optics express.

[86]  I. Suemune,et al.  Theoretical study of differential gain in strained quantum well structures , 1991 .

[87]  Milton Feng,et al.  Microwave characterization of Purcell enhancement in a microcavity laser , 2010 .

[88]  James A. Lott,et al.  30-GHz Bandwidth With Directly Current-Modulated 980-nm Oxide-Aperture VCSELs , 2017, IEEE Photonics Technology Letters.

[89]  Robert Magnusson,et al.  Wideband reflectors with zero-contrast gratings. , 2014, Optics letters.

[90]  Dieter Bimberg,et al.  Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs. , 2014, Optics express.

[91]  Siyuan Yu,et al.  Orbital angular momentum vertical-cavity surface-emitting lasers , 2015 .

[92]  Peter A. Andrekson,et al.  94-Gb/s 4-PAM Using an 850-nm VCSEL, Pre-Emphasis, and Receiver Equalization , 2016, IEEE Photonics Technology Letters.

[93]  Johan S. Gustavsson,et al.  20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL , 2014 .

[94]  R. Baets,et al.  First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs , 1998, IEEE Photonics Technology Letters.

[95]  C. S. Wang,et al.  High-efficiency, high-speed VCSELs with 35 Gbit=s error-free operation , 2007 .

[96]  D. Deppe,et al.  Native-Oxide Defined Ring Contact for Low Threshold Vertical-Cavity Lasers , 1994 .

[97]  John Michael Dallesasse,et al.  Oxidation of Al-bearing III-V materials: A review of key progress , 2013 .

[98]  Mikhail V. Maximov,et al.  Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s , 2009 .

[99]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[100]  Takayoshi Anan,et al.  25 Gbit/s operation of InGaAs-based VCSELs , 2006 .

[101]  Xin Yin,et al.  Single-Mode High-Speed 1.5-μm VCSELs , 2017, Journal of Lightwave Technology.

[102]  Kresten Yvind,et al.  Hybrid vertical‐cavity laser with lateral emission into a silicon waveguide , 2014, 1411.2483.

[103]  Wenjun Zhou,et al.  Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser , 2009 .

[104]  K. Choquette,et al.  Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries , 1994, IEEE Photonics Technology Letters.

[105]  Shinji Tsuji,et al.  Dependence of optical gain on crystal orientation in surface‐emitting lasers with strained quantum wells , 1994 .

[106]  Holger Moench,et al.  VCSEL-based sensors for distance and velocity , 2016, SPIE OPTO.

[107]  Friedhelm Hopfer,et al.  32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL , 2009 .

[108]  Johan S. Gustavsson,et al.  High-Speed VCSELs With Strong Confinement of Optical Fields and Carriers , 2016, Journal of Lightwave Technology.

[109]  Wanhua Zheng,et al.  Comparison between high- and zero-contrast gratings as VCSEL mirrors , 2017 .

[110]  C. Chang-Hasnain,et al.  Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser , 2010, IEEE Photonics Journal.

[111]  Connie J. Chang-Hasnain,et al.  Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers , 2008 .

[112]  X. Letartre,et al.  3D integration of photonic crystal devices: vertical coupling with a silicon waveguide. , 2010, Optics express.

[113]  G. W. Pickrell,et al.  Monolithic Integration of Vertical-Cavity Surface-Emitting Lasers with In-Plane Waveguides , 2005 .

[114]  Rainer Michalzik,et al.  High-performance oxide-confined GaAs VCSELs , 1997 .

[115]  Richard V. Penty,et al.  Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers , 1997 .

[116]  Li Zhu,et al.  Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. , 2015, Optics express.

[117]  Il-Sug Chung,et al.  Silicon-photonics light source realized by III–V/Si-grating-mirror laser , 2010 .

[118]  Milton Feng,et al.  The effect of mode spacing on the speed of quantum-well microcavity lasers , 2010 .

[119]  Roger King,et al.  Volume production of polarization controlled single-mode VCSELs , 2008, SPIE OPTO.

[120]  J. Gustavsson,et al.  Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings. , 2016, Optics express.

[121]  Takafumi Yao,et al.  Surface emitting laser diode with AlxGa1−xAs /GaAs multilayered heterostructure , 1985 .

[122]  J. Kitching,et al.  A microfabricated atomic clock , 2004 .

[123]  Michael Liu,et al.  50 Gb/s error-free data transmission of 850 nm oxide-confined VCSELs , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[124]  Weidong Zhou,et al.  Field penetrations in photonic crystal Fano reflectors. , 2010, Optics express.

[125]  Nikolai N. Ledentsov,et al.  120°C 20 Gbit/s operation of 980 nm VCSEL , 2008 .

[126]  Alex Mutig,et al.  85 °C error-free operation at 38 Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers , 2012 .

[127]  Kazuya Nagashima,et al.  1060nm 28-Gbps VCSEL developed at Furukawa , 2014, Photonics West - Optoelectronic Materials and Devices.

[128]  Danyang Yuan,et al.  Heterogeneous integration of a III-V VCSEL light source for optical fiber sensing. , 2016, Optics letters.

[129]  Johan S. Gustavsson,et al.  30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s , 2015 .

[130]  K. Iga,et al.  GaInAsP/InP Surface Emitting Injection Lasers , 1979 .

[131]  E. Semenova,et al.  1060-nm Tunable Monolithic High Index Contrast Subwavelength Grating VCSEL , 2013, IEEE Photonics Technology Letters.

[132]  A. N. Al-Omari,et al.  Improved performance of top-emitting oxide-confined polyimide-planarized 980 nm VCSELs with copper-plated heat sinks , 2012 .

[133]  Huihui Lu,et al.  Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit. , 2016, Optics express.

[134]  Hao Chen,et al.  The next generation of high speed VCSELs at Finisar , 2012, Photonics West - Optoelectronic Materials and Devices.

[135]  Daniel Mahgerefteh,et al.  Techno-economic comparison of Silicon Photonics and multimode VCSELs , 2016, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[136]  Kent D. Choquette,et al.  37-GHz Modulation via Resonance Tuning in Single-Mode Coherent Vertical-Cavity Laser Arrays , 2015, IEEE Photonics Technology Letters.

[137]  J. P. Harbison,et al.  Low threshold electrically pumped vertical cavity surface emitting microlasers , 1989, Annual Meeting Optical Society of America.

[138]  Martin A. Afromowitz,et al.  Thermal conductivity of Ga1−xAlxAs alloys , 1973 .

[139]  Yu-Chia Chang,et al.  Efficient, High-Data-Rate, Tapered Oxide-Aperture Vertical-Cavity Surface-Emitting Lasers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[140]  R. Pu,et al.  Thermal resistance of VCSELs bonded to integrated circuits , 1999, IEEE Photonics Technology Letters.

[141]  Hui Li,et al.  Spectral Efficiency and Energy Efficiency of Pulse-Amplitude Modulation Using 1.3 μm Wafer-Fusion VCSELs for Optical Interconnects , 2017 .

[142]  W. Hofmann,et al.  High-Speed and Temperature-Stable, Oxide-Confined 980-nm VCSELs for Optical Interconnects , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[143]  Paul L. Gourley,et al.  Visible, room‐temperature, surface‐emitting laser using an epitaxial Fabry–Perot resonator with AlGaAs/AlAs quarter‐wave high reflectors and AlGaAs/GaAs multiple quantum wells , 1987 .

[144]  C. Schow,et al.  A 71-Gb/s NRZ Modulated 850-nm VCSEL-Based Optical Link , 2015, IEEE Photonics Technology Letters.

[145]  Y. Suzuki,et al.  Broad-band mirror (1.12-1.62 /spl mu/m) using a subwavelength grating , 2004, IEEE Photonics Technology Letters.

[146]  Weijian Yang,et al.  Recent advances in high-contrast metastructures, metasurfaces and photonic crystals , 2017, 1707.07753.

[147]  Mikel Agustin,et al.  Effective 100 Gb/s IM/DD 850-nm Multi- and Single-Mode VCSEL Transmission Through OM4 MMF , 2017, Journal of Lightwave Technology.

[148]  Yoshitaka Ohiso,et al.  Growth of vertical-cavity surface-emitting laser structures on GaAs (311)B substrates by metalorganic chemical vapor deposition , 1997 .

[149]  Alex Mutig,et al.  Energy-efficient and temperature-stable oxide-confined 980 nm VCSELs operating error-free at 38 Gbit/s at 85°C , 2014 .

[150]  Mark R. Pinto,et al.  Elimination of heterojunction band discontinuities by modulation doping , 1992 .

[151]  P. Westbergh,et al.  Active Region Design for High-Speed 850-nm VCSELs , 2010, IEEE Journal of Quantum Electronics.

[152]  Weijian Yang,et al.  Monolithic high-contrast metastructure for beam-shaping VCSELs , 2018 .

[153]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[154]  Hui Li,et al.  85-fJ Dissipated Energy Per Bit at 30 Gb/s Across 500-m Multimode Fiber Using 850-nm VCSELs , 2013, IEEE Photonics Technology Letters.

[155]  Po-Kuan Shen,et al.  On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides , 2014, OFC 2014.

[156]  Takafumi Yao,et al.  GaAs/AlxGa1-xAs Multilayer Reflector for Surface Emitting Laser Diode , 1983 .

[157]  James A. Lott,et al.  Impact of the Oxide-Aperture Diameter on the Energy Efficiency, Bandwidth, and Temperature Stability of 980-nm VCSELs , 2015, Journal of Lightwave Technology.

[158]  Wanhua Zheng,et al.  Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure. , 2012, Optics express.

[159]  I. Sagnes,et al.  Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter. , 2006, Optics Express.

[160]  Alex Mutig,et al.  Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers , 2009 .

[161]  Baiming Guo,et al.  High-efficiency VCSEL arrays for illumination and sensing in consumer applications , 2016, SPIE OPTO.

[162]  P. Westbergh,et al.  Impact of Photon Lifetime on High-Speed VCSEL Performance , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[163]  Fumio Koyama,et al.  29 GHz directly modulated 980 nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity , 2013 .

[164]  P. Moser,et al.  81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects , 2011 .

[165]  Nikolai Ledentsov,et al.  54 Gbit/s OOK transmission using single-mode VCSEL up to 2.2 km MMF , 2016 .

[166]  P. Wolf,et al.  1550-nm High-Speed Short-Cavity VCSELs , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[167]  D. Bordel,et al.  III-V-on-Si Photonic Crystal Vertical-Cavity Surface-Emitting Laser Arrays for Wavelength Division Multiplexing , 2013, IEEE Photonics Technology Letters.