Arrow's Theorem in Spatial Environments

In spatial environments, we consider social welfare functions satisfying Arrow's requirements. i.e., weak Pareto and independence of irrelevant alternatives. When the policy space os a one-dimensional continuum, such a welfare function is determined by a collection of 2n strictly quasi-concave preferences and a tie-breaking rule. As a corrollary, we obtain that when the number of voters is odd, simple majority voting is transitive if and only if each voter's preference is strictly quasi-concave. When the policy space is multi-dimensional, we establish Arrow's impossibility theorem. Among others, we show that weak Pareto, independence of irrelevant alternatives, and non-dictatorship are inconsistent if the set of alternatives has a non-empty interior and it is compact and convex.

[1]  K. Arrow,et al.  Social Choice and Individual Values , 1951 .

[2]  Willi Hock,et al.  Lecture Notes in Economics and Mathematical Systems , 1981 .

[3]  Kim C. Border An impossibility theorem for spatial models , 1984 .

[4]  H. Moulin On strategy-proofness and single peakedness , 1980 .

[5]  M. Jackson,et al.  Strategic Candidacy and Voting Procedures , 2001 .

[6]  Faruk Gul,et al.  Generalized Median Voter Schemes and Committees , 1993 .

[7]  Lars Ehlers,et al.  Independence axioms for the provision of multiple public goods as options , 2001, Math. Soc. Sci..

[8]  H. Moulin Generalized condorcet-winners for single peaked and single-plateau preferences , 1984 .

[9]  Euclidean individual preference and continuous social preference , 1993 .

[10]  M. Satterthwaite,et al.  Strategy-proofness and single-peakedness , 1976 .

[11]  John A. Weymark,et al.  Generalized median social welfare functions , 1993 .

[12]  Hans Peters,et al.  Independence of irrelevant alternatives and strategy-proofness on economic domains , 1992 .

[13]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[14]  Ehud Kalai,et al.  Social welfare functions when preferences are convex, strictly monotonic, and continuous , 1979 .

[15]  D. Black On the Rationale of Group Decision-making , 1948, Journal of Political Economy.

[16]  John A. Weymark,et al.  Candidate stability and nonbinary social choice , 2001 .

[17]  John A. Weymark,et al.  An Introduction to Arrovian Social Welfare Functions on Economic and Political Domains , 1996 .

[18]  Kim C. Border,et al.  Straightforward Elections, Unanimity, and Phantom Voters , 1983 .

[19]  K. Arrow Rational Choice Functions and Orderings1 , 1959 .