Directionlets: anisotropic multidirectional representation with separable filtering

In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual perception, intersect too many wavelet basis functions and lead to a nonsparse representation. To efficiently capture these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions, a more complex multidirectional (M-DIR) and anisotropic transform is required. We present a new lattice-based perfect reconstruction and critically sampled anisotropic M-DIR WT. The transform retains the separable filtering and subsampling and the simplicity of computations and filter design from the standard two-dimensional WT, unlike in the case of some other directional transform constructions (e.g., curvelets, contourlets, or edgelets). The corresponding anisotropic basis functions (directionlets) have directional vanishing moments along any two directions with rational slopes. Furthermore, we show that this novel transform provides an efficient tool for nonlinear approximation of images, achieving the approximation power O(N/sup -1.55/), which, while slower than the optimal rate O(N/sup -2/), is much better than O(N/sup -1/) achieved with wavelets, but at similar complexity.

[1]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[2]  Stéphane Mallat,et al.  Sparse geometric image representations with bandelets , 2005, IEEE Transactions on Image Processing.

[3]  Michael T. Orchard,et al.  Spatially adaptive image denoising under overcomplete expansion , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[4]  Laurent Balmelli,et al.  Rate-distortion optimal mesh simplification for communications , 2002 .

[5]  Justin K. Romberg,et al.  Wavelet-domain approximation and compression of piecewise smooth images , 2006, IEEE Transactions on Image Processing.

[6]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[7]  Rob A. Zuidwijk,et al.  Directional and Time-Scale Wavelet Analysis , 1999, SIAM J. Math. Anal..

[8]  Jelena Kovacevic,et al.  Filter banks and wavelets: Extensions and applications , 1992, Signal Processing.

[9]  Andrea Ridolfi Power spectra of random spikes and related complex signals , 2005 .

[10]  Martin Vetterli,et al.  Data Compression and Harmonic Analysis , 1998, IEEE Trans. Inf. Theory.

[11]  Martin J. Wainwright,et al.  Scale Mixtures of Gaussians and the Statistics of Natural Images , 1999, NIPS.

[12]  C. Weidmann Oligoquantization in low-rate lossy source coding , 2002 .

[13]  I. Johnstone,et al.  Wavelet Threshold Estimators for Data with Correlated Noise , 1997 .

[14]  Cormac Herley,et al.  Boundary filters for finite-length signals and time-varying filter banks , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[15]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[16]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[17]  Hayder M. S. Radha,et al.  Efficient image representation using binary space partitioning trees , 1994, Signal Process..

[18]  Robert D. Nowak,et al.  Wavelet-based image estimation: an empirical Bayes approach using Jeffrey's noninformative prior , 2001, IEEE Trans. Image Process..

[19]  Justin K. Romberg,et al.  Bayesian tree-structured image modeling using wavelet-domain hidden Markov models , 2001, IEEE Trans. Image Process..

[20]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[21]  Gary J. Sullivan,et al.  Efficient quadtree coding of images and video , 1994, IEEE Trans. Image Process..

[22]  N. Kingsbury Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .

[23]  Baltasar Beferull-Lozano,et al.  Rotation-invariant texture retrieval with gaussianized steerable pyramids , 2005, IEEE Transactions on Image Processing.

[24]  Olivier Rioul,et al.  A discrete-time multiresolution theory , 1993, IEEE Trans. Signal Process..

[25]  Nuria González Prelcic,et al.  Linear boundary extensions for finite length signals and paraunitary two-channel filterbanks , 2004, IEEE Transactions on Signal Processing.

[26]  Lina J. Karam,et al.  Wavelet-based adaptive image denoising with edge preservation , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[27]  Thomas Ertl,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 2014 .

[28]  Stéphane Mallat,et al.  Image compression with geometrical wavelets , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[29]  Cindy C. Parman,et al.  To code, or not to code? , 2003, The Journal of oncology management : the official journal of the American College of Oncology Administrators.

[30]  Peter Strobach,et al.  Quadtree-structured recursive plane decomposition coding of images , 1991, IEEE Trans. Signal Process..

[31]  John W. Woods,et al.  Subband coding of images , 1986, IEEE Trans. Acoust. Speech Signal Process..

[32]  Martin Vetterli,et al.  Directional wavelet transforms and frames , 2002, Proceedings. International Conference on Image Processing.

[33]  M. Carter Computer graphics: Principles and practice , 1997 .

[34]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[35]  Xiaolin Wu Image coding by adaptive tree-structured segmentation , 1992, IEEE Trans. Inf. Theory.

[36]  Murat Kunt,et al.  Adaptive Split-and-Merge for Image Analysis and Coding , 1986, Other Conferences.

[37]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[38]  Minh N. Do,et al.  Bi-orthogonal filter banks with directional vanishing moments [image representation applications] , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[39]  Mark J. T. Smith,et al.  A low complexity overcomplete directional image pyramid , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[40]  Pier Luigi Dragotti,et al.  Wavelet footprints and frames for signal processing and communication , 2002 .

[41]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[42]  Martin Vetterli,et al.  Scalable compression and transmission of internet multicast video , 1996 .

[43]  M. West On scale mixtures of normal distributions , 1987 .

[44]  Antonio Ortega Optimization techniques for adaptive quantization of image and video under delay constraints , 1994 .

[45]  Martin Vetterli,et al.  Directional wavelets and wavelet footprints for compression and denoising , 2002 .

[46]  Gunnar Karlsson Subband coding for packet video , 1989 .

[47]  Jelena Kovacevic,et al.  Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn , 1992, IEEE Trans. Inf. Theory.

[48]  Mark J. T. Smith,et al.  A filter bank for the directional decomposition of images: theory and design , 1992, IEEE Trans. Signal Process..

[49]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[50]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[51]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[52]  Stéphane Mallat,et al.  Bandelet Image Approximation and Compression , 2005, Multiscale Model. Simul..

[53]  Charles A. Bouman,et al.  Image compression with multitree tilings , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[54]  Kamil Metin Uz,et al.  Multiresolution systems for video coding , 1994, Signal Process..

[55]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[56]  Jan P. Allebach,et al.  The analysis and design of multidimensional FIR perfect reconstruction filter banks for arbitrary sampling lattices , 1991 .

[57]  D H Tay,et al.  Flexible design of multidimensional perfect reconstruction FIR 2-band filters using transformations of variables , 1993, IEEE Trans. Image Process..

[58]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[59]  Stefan Horbelt Splines and wavelets for image warping and projection , 2001 .

[60]  Michel Barlaud,et al.  Image coding using wavelet transform , 1992, IEEE Trans. Image Process..

[61]  Malek Adjouadi,et al.  Minimization of boundary artifacts on scalable image compression using symmetric-extended wavelet transform , 2004, International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004..

[62]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[63]  Touradj Ebrahimi,et al.  The JPEG 2000 still image compression standard , 2001, IEEE Signal Process. Mag..

[64]  Martin Vetterli,et al.  Spatially adaptive wavelet thresholding with context modeling for image denoising , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[65]  R. Shukla,et al.  Rate-distortion optimized geometrical image processing , 2004 .

[66]  Baltasar Beferull-Lozano,et al.  Discrete Multi-Directional Wavelet Bases , 2003 .

[67]  Elliot Neil Linzer Arithmetic complexity and numerical properties of algorithms involving Toeplitz matrices , 1991, Signal Process..

[68]  P. P. Vaidyanathan,et al.  A new class of two-channel biorthogonal filter banks and wavelet bases , 1995, IEEE Trans. Signal Process..

[69]  Günter Wackersreuther On two-dimensional polyphase filter banks , 1986, IEEE Trans. Acoust. Speech Signal Process..

[70]  Baltasar Beferull-Lozano,et al.  Discrete directional wavelet bases for image compression , 2003, Visual Communications and Image Processing.

[71]  Mark William Garrett Contributions toward real-time services on packet switched networks , 1993 .

[72]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[73]  Raymond K. K. Yip,et al.  Line detection algorithm , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[74]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[75]  M. Do Directional multiresolution image representations , 2002 .

[76]  Xiao-Yu Hu Low-delay low-complexity error-correcting codes on sparse graphs , 2003 .

[77]  David Hasler,et al.  Perspectives on panoramic photography , 2002 .

[78]  I. Daubechies,et al.  Non-separable bidimensional wavelets bases. , 1993 .

[79]  Justin K. Romberg,et al.  Rate-distortion optimized image compression using wedgelets , 2002, Proceedings. International Conference on Image Processing.

[80]  Y. Meyer,et al.  Wavelets and Filter Banks , 1991 .

[81]  M. Vetterli,et al.  Time-varying filter banks and multiwavelets , 1994, Proceedings of IEEE 6th Digital Signal Processing Workshop.

[82]  Toshiyuki Uto,et al.  Smooth signal extension for M-channel paraunitary filterbanks and its application to image coding , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[83]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[84]  E. Candès New tight frames of curvelets and optimal representations of objects with C² singularities , 2002 .

[85]  Irena Maravic Sampling methods for parametric non-bandlimited signals , 2004 .

[86]  Charles A. Bouman,et al.  Optimal tilings and best basis search in large dictionaries , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[87]  Martin Vetterli,et al.  Footprints and edgeprints for image denoising and compression , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[88]  Thomas W. Parks,et al.  Prediction of image detail , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[89]  Christof Faller,et al.  PARAMETRIC CODING OF SPATIAL AUDIO , 2004 .

[90]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[91]  K Ramchandran,et al.  Best wavelet packet bases in a rate-distortion sense , 1993, IEEE Trans. Image Process..

[92]  Thomas W. Parks,et al.  Adaptive homogeneity-directed demosaicing algorithm , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[93]  Michael T. Orchard,et al.  Wavelet packet image coding using space-frequency quantization , 1998, IEEE Trans. Image Process..

[94]  Razvan Cristescu,et al.  EFFICIENT DECENTRALIZED COMMUNICATIONS IN SENSOR NETWORKS , 2004 .

[95]  Ivan W. Selesnick,et al.  Multiwavelet bases with extra approximation properties , 1998, IEEE Trans. Signal Process..

[96]  Minh N. Do,et al.  Rat e-distortion optimized tree structured compression algorithms for piecewise smooth images , 2005 .

[97]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[98]  Martin Vetterli,et al.  Image denoising and interpolation based on compression and edge models , 1998 .

[99]  Justin K. Romberg,et al.  Approximation and compression of piecewise smooth images using a wavelet/wedgelet geometric model , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[100]  Truong Q. Nguyen,et al.  Tensor-product wavelet vs. Mallat decomposition: a comparative analysis , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[101]  Baltasar Beferull-Lozano,et al.  Discrete multidirectional wavelet bases , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[102]  S. Mallat A wavelet tour of signal processing , 1998 .

[103]  Michael T. Orchard,et al.  Space-frequency quantization for wavelet image coding , 1997, IEEE Trans. Image Process..

[104]  P. Prandoni Optimal segmentation techniques for piecewise stationary signals , 1999 .

[105]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[106]  Thomas W. Parks,et al.  Adaptive, optimal-recovery image interpolation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[107]  Martin Vetterli,et al.  Wavelet footprints: theory, algorithms, and applications , 2003, IEEE Trans. Signal Process..

[108]  Baltasar Beferull-Lozano,et al.  Approximation power of directionlets , 2005, IEEE International Conference on Image Processing 2005.

[109]  I. Daubechies,et al.  A new technique to estimate the regularity of refinable functions , 1996 .

[110]  Harald Viste,et al.  Binaural localization and separation techniques , 2004 .

[111]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[112]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[113]  G. Strang,et al.  Orthogonal multiwavelets with vanishing moments , 1994 .

[114]  Minh N. Do,et al.  The Nonsubsampled Contourlet Transform: Theory, Design, and Applications , 2006, IEEE Transactions on Image Processing.

[115]  Jonathan Hong,et al.  Discrete Fourier, Hartley, and cosine transforms in signal processing , 1994, Signal Process..

[116]  Zoran Pecenovic Integrating visual and semantic descriptions for effective, flexible and user-friendly image retrieval , 2003 .

[117]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[118]  Ronald R. Coifman,et al.  Brushlets: A Tool for Directional Image Analysis and Image Compression , 1997 .

[119]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[120]  Minh N. Do,et al.  Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images , 2005, IEEE Transactions on Image Processing.

[121]  M. Vetterli,et al.  Discrete directional wavelet bases and frames for image compression and denoising , 2003 .

[122]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[123]  Hans Knutsson,et al.  Compact associative representation of visual information , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[124]  Yair Shoham,et al.  Efficient bit allocation for an arbitrary set of quantizers [speech coding] , 1988, IEEE Trans. Acoust. Speech Signal Process..

[125]  Albert Cohen,et al.  Compact representation of images by edge adapted multiscale transforms , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[126]  Martin Vetterli,et al.  Orthogonal time-varying filter banks and wavelet packets , 1994, IEEE Trans. Signal Process..

[127]  Toshiyuki Uto,et al.  A smooth extension for the nonexpansive orthogonal wavelet decomposition of finite length signals , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[128]  Justin K. Romberg,et al.  Multiscale wedgelet image analysis: fast decompositions and modeling , 2002, Proceedings. International Conference on Image Processing.

[129]  Jack Bresenham,et al.  Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..

[130]  Emmanuel J. Candès,et al.  Curvelets and Curvilinear Integrals , 2001, J. Approx. Theory.

[131]  Martin Vetterli,et al.  A computational theory of laurent polynomial rings and multidimensional fir systems , 1999 .

[132]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[133]  Robert Bregovic,et al.  Multirate Systems and Filter Banks , 2002 .

[134]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[135]  P. P. Vaidyanathan,et al.  Multidimensional multirate filters and filter banks derived from one-dimensional filters , 1993, IEEE Trans. Signal Process..

[136]  Andrew B. Watson,et al.  The cortex transform: rapid computation of simulated neural images , 1987 .

[137]  Charles A. Bouman,et al.  Fast search for best representations in multitree dictionaries , 2006, IEEE Transactions on Image Processing.

[138]  Edward A. Lee,et al.  Adaptive Signal Models: Theory, Algorithms, and Audio Applications , 1998 .