Tunable Optical Sources and Synthetic Nonlinear Media: Growth and Characterization of Nonlinear Optical Materials

Abstract : The results of a joint research program in the development of nonlinear optical devices for the generation of tunable coherent radiation and the growth and processing of the nonlinear optical materials used in these devices is described. Continuous-wave (cw) external-resonant-cavity harmonic generation and optical parametric oscillation have demonstrated the requirement for low losses and good resistance to optical damage in nonlinear optical materials. We have extended cw harmonic conversion to the generation of 1.7 watts of 532-nm radiation using periodically poled lithium niobate and lithium- diffused lithium niobate. We are continuing to investigate the growth technology of the bulk chalcopyrite materials AgGaSe2 and ZnGeP2 and quantum well structures in GaAs for nonlinear infrared applications. A substantial effort has been placed of the characterization of nonlinear materials. Nonlinear optical coefficients have been remeasured in a number of materials to resolve discrepancies that have persisted for two decades, and the optical properties of the lithium diffused lithium niobate have been accurately characterized.

[1]  Robert L. Byer,et al.  Measurement of nonlinear optical coefficients by phase-matched harmonic generation , 1991, Optics & Photonics.

[2]  M. Fejer,et al.  Periodically poled LiNbO3 for high‐efficiency second‐harmonic generation , 1991 .

[3]  Laura E. Davis,et al.  Phase-matched harmonic generation in lithium triborate (LBO) , 1991 .

[4]  山口 靖英 Advanced Solid-State Lasers Topical Meeting会議報告 , 1991 .

[5]  Eugene S. Polzik,et al.  Frequency doubling with potassium niobate in an external cavity , 1991 .

[6]  Robert L. Byer,et al.  Optical parametric oscillator frequency tuning and control , 1991 .

[7]  A. Ferguson,et al.  Resonant frequency doubling of an actively mode-locked Ti:Al2O3 laser using an external enhancement cavity , 1991 .

[8]  R. Feigelson,et al.  Improvements in the optical quality of AgGaSe2 crystals , 1990 .

[9]  Robert L. Byer,et al.  Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB/sub 2/O/sub 4/, LiIO/sub 3/, MgO:LiNbO/sub 3/, and KTP measured by phase-matched second-harmonic generation , 1990 .

[10]  Robert L. Byer,et al.  Coherence properties of a doubly resonant monolithic optical parametric oscillator , 1990 .

[11]  M. Fejer,et al.  Quasi‐phase‐matched second‐harmonic generation of blue light in periodically poled LiNbO3 , 1990 .

[12]  M. Fejer,et al.  Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration , 1990 .

[13]  R. Feigelson,et al.  Growth of nonlinear crystals for frequency conversion , 1990 .

[14]  R L Byer,et al.  Injection locking of a 13-W cw Nd:YAG ring laser. , 1989, Optics letters.

[15]  W. J. Kozlovsky,et al.  Efficient, single-axial-mode operation of a monolithic MgO:LiNbO(3) optical parametric oscillator. , 1989, Optics letters.

[16]  R. Byer,et al.  Barium borate optical parametric oscillator , 1989 .

[17]  R. Byer,et al.  Eigenpolarization theory of monolithic nonplanar ring oscillators , 1989 .

[18]  W. J. Kozlovsky,et al.  Monolithic MgO:LiNbO(3) doubly resonant optical parametric oscillator pumped by a frequency-doubled diode-laser-pumped Nd:YAG laser. , 1989, Optics letters.

[19]  R. Byer,et al.  Visible BaB2O4 optical parametric oscillator pumped at 355 nm by a single‐axial‐mode pulsed source , 1988 .

[20]  Robert L. Byer,et al.  Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO/sub 3/ external resonant cavities , 1988 .

[21]  R. Byer,et al.  High-average-intensity nonlinear infrared frequency conversion in AgGaSe 2 , 1988 .

[22]  Robert L. Byer,et al.  Stoichiometric LiNbO3 single-crystal fibers for nonlinear optical applications , 1987 .

[23]  W. R. Trutna,et al.  Unidirectional diode-laser-pumped Nd:YAG ring laser with a small magnetic field. , 1987, Optics letters.

[24]  A C Nilsson,et al.  Frequency stability and offset locking of a laser-diode-pumped Nd:YAG monolithic nonplanar ring oscillator. , 1987, Optics letters.

[25]  Robert L. Byer,et al.  Broadly tunable infrared parametric oscillator using AgGaSe2 , 1986 .

[26]  R. Byer,et al.  Monolithic, unidirectional single-mode Nd:YAG ring laser. , 1985, Optics letters.

[27]  M. Fejer,et al.  Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers , 1984 .

[28]  Robert L. Byer,et al.  AgGaS2 infrared parametric oscillator , 1984 .

[29]  T. Elsaesser,et al.  Parametric generation of tunable picosecond pulses in the medium infrared using AgGaS2 crystals , 1984 .

[30]  D. Chemla,et al.  Silver thiogallate (AgGaS 2 ) - Part 1: Nonlinear optical properties , 1974 .

[31]  R. Smith,et al.  Silver thiogallate (AgGaS 2 ) - Part II: Linear optical properties , 1974 .

[32]  G. D. Boyd,et al.  Linear and nonlinear optical properties of some ternary selenides , 1972 .

[33]  G. Boyd,et al.  Linear and nonlinear optical properties of AgGaS 2 , CuGaS 2 , and CuInS 2 , and theory of the wedge technique for the measurement of nonlinear coefficients , 1971 .

[34]  G. D. Boyd,et al.  OPTICALLY‐INDUCED REFRACTIVE INDEX INHOMOGENEITIES IN LiNbO3 AND LiTaO3 , 1966 .