Effects of Functionalization of TiO2 Nanotube Array Sensors with Pd Nanoparticles on Their Selectivity

This study compared the responses of Pd-functionalized and pristine titanate (TiO2) nanotube arrays to ethanol with those to acetone to determine the effects of functionalization of TiO2 nanotubes with Pd nanoparticles on the sensitivity and selectivity. The responses of pristine and Pd-functionalized TiO2 nanotube arrays to ethanol gas at 200 °C were ∼2877% and ∼21,253%, respectively. On the other hand, the responses of pristine and Pd-functionalized TiO2 nanotube arrays to acetone gas at 250 °C were ∼1636% and 8746% respectively. In the case of ethanol sensing, the response and recovery times of Pd-functionalized TiO2 nanotubes (10.2 and 7.1 s) were obviously shorter than those of pristine TiO2 nanotubes (14.3 and 8.8 s), respectively. In contrast, in the case of acetone sensing the response and recovery times of Pd-functionalized TiO2 nanotubes (42.5 and 19.7 s) were almost the same as those of pristine TiO2 nanotubes (47.2 and 17.9 s). TiO2 nanotube arrays showed the strongest response to ethanol and Pd functionalization was the most effective in improving the response of TiO2 nanotubes to ethanol among six different types of gases: ethanol, acetone, CO, H2, NH3 and NO2. The origin of the superior sensing properties of Pd-functionalized TiO2 nanotubes toward ethanol to acetone is also discussed.

[1]  Giorgio Sberveglieri,et al.  TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties , 2013, Sensors.

[2]  Qiang Liu,et al.  Hydrogen Sensing with Ni-Doped TiO2 Nanotubes , 2013, Sensors.

[3]  Hongyi Li,et al.  A novel NO2 sensor based on TiO2 nanotubes array with in-situ Au decoration. , 2013, Journal of nanoscience and nanotechnology.

[4]  M. Misra,et al.  Light-assisted anodized TiO₂ nanotube arrays. , 2012, ACS applied materials & interfaces.

[5]  Sang Min Lee,et al.  Enhanced ethanol sensing properties of TiO2 nanotube sensors , 2012 .

[6]  Changhyun Jin,et al.  Ultrasensitive multiple networked Ga2O3-core/ZnO-shell nanorod gas sensors , 2012 .

[7]  N. Yamazoe,et al.  Enhanced gas sensing characteristics of Au-Loaded TiO2 Nanotube Sensors , 2011 .

[8]  Sheikh A. Akbar,et al.  A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays , 2011 .

[9]  H. Bajaj,et al.  Energy Efficient UV-LED Source and TiO2 Nanotube Array-Based Reactor for Photocatalytic Application , 2011 .

[10]  I. Muto,et al.  Hydrogen Gas Sensor Using Pt- and Pd-Added Anodic TiO[sub 2] Nanotube Films , 2010 .

[11]  Christopher R. Bowen,et al.  Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition , 2010 .

[12]  J. Radnik,et al.  Development of Ni-Pd bimetallic catalysts for the utilization of carbon dioxide and methane by dry reforming , 2009 .

[13]  Tetsuya Kida,et al.  Detection of organic gases using TiO2 nanotube-based gas sensors , 2009 .

[14]  Han Gao,et al.  Conduction-atomic force microscopy study of H2 sensing mechanism in Pd nanoparticles decorated TiO2 nanofilm , 2009 .

[15]  Shuying Cheng,et al.  Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels , 2009 .

[16]  S. Ghosh,et al.  Nanocrystalline Ni0.6Zn0.4Fe2O4: a novel semiconducting material for ethanol detection. , 2009, Talanta.

[17]  Jun Wang,et al.  Anodic Formation of Ordered TiO2 Nanotube Arrays: Effects of Electrolyte Temperature and Anodization Potential , 2009 .

[18]  Nageh K. Allam,et al.  Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays , 2008 .

[19]  Haibin Yang,et al.  Synthesis and characterization of TiO2 nanotubes for humidity sensing , 2008 .

[20]  I. Mulla,et al.  Influence of Pd doping on morphology and LPG response of SnO2 , 2008 .

[21]  Kengo Shimanoe,et al.  Theory of power laws for semiconductor gas sensors , 2008 .

[22]  Jihye Gwak,et al.  Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor , 2007 .

[23]  Jordi Riu,et al.  Gas sensors based on nanostructured materials. , 2007, The Analyst.

[24]  Lixia Yang,et al.  Well-Dispersed PtAu Nanoparticles Loaded into Anodic Titania Nanotubes: A High Antipoison and Stable Catalyst System for Methanol Oxidation in Alkaline Media , 2007 .

[25]  Sean C. Smith,et al.  Hydrogen spillover mechanism on a Pd-doped Mg surface as revealed by ab initio density functional calculation. , 2007, Journal of the American Chemical Society.

[26]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[27]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[28]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[29]  E. McFarland,et al.  Synthesis of Au nanoclusters supported upon a TiO_2 nanotube array , 2005 .

[30]  Dmitri O. Klenov,et al.  Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. , 2005, Nano letters.

[31]  Hidemoto Nakagawa,et al.  A room-temperature operated hydrogen leak sensor , 2003 .

[32]  Craig A. Grimes,et al.  Hydrogen sensing using titania nanotubes , 2003 .

[33]  Kengo Shimanoe,et al.  Cr-doped TiO2 gas sensor for exhaust NO2 monitoring , 2003 .

[34]  Craig A. Grimes,et al.  A Sentinel Sensor Network for Hydrogen Sensing , 2003 .

[35]  Makoto Egashira,et al.  Synthesis of mesoporous TiO2-based powders and their gas-sensing properties , 2002 .

[36]  Marc Aucouturier,et al.  Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy , 1999 .

[37]  M. Boudart `On the nature of spilt-over hydrogen' , 1999 .

[38]  U. Roland,et al.  On the nature of spilt-over hydrogen , 1997 .

[39]  P. Moseley,et al.  Solid state gas sensors , 1997 .

[40]  P. Hoyer,et al.  Formation of a Titanium Dioxide Nanotube Array , 1996 .

[41]  C. Duriez,et al.  Precursor state in the chemisorption of CO on supported palladium clusters , 1991 .

[42]  M. Boudart,et al.  RECOMBINATION OF ATOMS AT THE SURFACE OF THERMOCOUPLE PROBES , 1961 .

[43]  Kengo Shimanoe,et al.  Cr-doped TiO 2 gas sensor for exhaust NO 2 monitoring , 2003 .

[44]  E. Darque-Ceretti,et al.  Caractérisation d'oxydes anodiques poreux et compacts de titane et de Ta6V , 1997 .