A Compact SPICE Model of Unipolar Memristive Devices

This paper introduces a compact SPICE model of unipolar memristive devices. The model is based on the unipolar memristive system equations with the assistance of two resistance switching velocity functions for controlling the SET and RESET processes, respectively. Our model is highly parameterized by providing various adjustable model parameters. We verify the functionality of our model by the HSPICE simulation with parameters abstracted from a real device and a previous model. As an example of model application, we successfully use the model to simulate the stateful logic operations of the memristive implication gate circuit. Compared with previous models, the proposed model is of good efficiency, accuracy, and usability.

[1]  An Chen,et al.  Thermal effects and instability in unipolar resistive switching devices , 2011, 69th Device Research Conference.

[2]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[3]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[4]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[5]  Guoqiang Li,et al.  Unipolar memristors enable “stateful” logic operations via material implication , 2011 .

[6]  Yicheng Lu,et al.  Vertically integrated ZnO-Based 1D1R structure for resistive switching , 2013 .

[7]  Tri-Rung Yew,et al.  ZnO-based one diode-one resistor device structure for crossbar memory applications , 2012 .

[8]  Y. V. Pershin,et al.  SPICE Model of Memristive Devices with Threshold , 2012, 1204.2600.

[9]  D. Ielmini,et al.  Universal Reset Characteristics of Unipolar and Bipolar Metal-Oxide RRAM , 2011, IEEE Transactions on Electron Devices.

[10]  Dong Myong Kim,et al.  A compact HSPICE macromodel of resistive RAM , 2007, IEICE Electron. Express.

[11]  Frederick T. Chen,et al.  Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications , 2008 .

[12]  Qi Liu,et al.  Formation and annihilation of Cu conductive filament in the nonpolar resistive switching Cu/ZrO2:Cu/Pt ReRAM , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[13]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[14]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[15]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[16]  L. Chua Memristor-The missing circuit element , 1971 .

[17]  Uri C. Weiser,et al.  TEAM: ThrEshold Adaptive Memristor Model , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Zhen Yan,et al.  Unipolar resistive switching effect in YMn1−δO3 thin films , 2010 .

[19]  Dalibor Biolek,et al.  SPICE Model of Memristor with Nonlinear Dopant Drift , 2009 .

[20]  Sung-Mo Kang,et al.  Compact Models for Memristors Based on Charge-Flux Constitutive Relationships , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[21]  Kyungmin Kim,et al.  Memristor Applications for Programmable Analog ICs , 2011, IEEE Transactions on Nanotechnology.

[22]  Tetsuya Asai,et al.  A behavioral model of unipolar resistive RAMs and its application to HSPICE integration , 2010, IEICE Electron. Express.

[23]  Massimiliano Di Ventra,et al.  Practical Approach to Programmable Analog Circuits With Memristors , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  W. Lu,et al.  High-density Crossbar Arrays Based on a Si Memristive System , 2008 .

[25]  Mika Laiho,et al.  Cellular nanoscale network cell with memristors for local implication logic and synapses , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[26]  Narayan Srinivasa,et al.  A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. , 2012, Nano letters.

[27]  Ennio Mingolla,et al.  From Synapses to Circuitry: Using Memristive Memory to Explore the Electronic Brain , 2011, Computer.

[28]  Leon O. Chua,et al.  Memristor oscillators , 2008, Int. J. Bifurc. Chaos.

[29]  W. Lu,et al.  CMOS compatible nanoscale nonvolatile resistance switching memory. , 2008, Nano letters.

[30]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[31]  D. Batas,et al.  A Memristor SPICE Implementation and a New Approach for Magnetic Flux-Controlled Memristor Modeling , 2011, IEEE Transactions on Nanotechnology.

[32]  György Cserey,et al.  Macromodeling of the Memristor in SPICE , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[33]  Byung Joon Choi,et al.  Identification of a determining parameter for resistive switching of TiO2 thin films , 2005 .

[34]  F. Zeng,et al.  Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. , 2009, Nano letters.

[35]  Jeyavijayan Rajendran,et al.  Design Considerations for Multilevel CMOS/Nano Memristive Memory , 2012, JETC.