Solve Partial Differential Equations on Manifold From Incomplete Inter-Point Distance

Solutions of partial differential equations (PDEs) on manifolds have provided important applications in different fields in science and engineering. Existing methods are majorly based on discretization of manifolds as implicit functions, triangle meshes, or point clouds, where the manifold structure is approximated by either zero level set of an implicit function or a set of points. In many applications, manifolds might be only provided as an inter-point distance matrix with possible missing values. This paper discusses a framework to discretize PDEs on manifolds represented as incomplete distance information. Without conducting a time-consuming global coordinates reconstruction, we propose a more efficient strategy by discretizing differential operators only based on point-wisely local reconstruction. Our local reconstruction model is based on the recent advances of low-rank matrix completion theory, where only a very small random portion of distance information is required. This method enables us to conduct analyses of incomplete distance data using solutions of special designed PDEs such as the Laplace-Beltrami (LB) eigen-system. As an application, we demonstrate a new way of manifold reconstruction from an incomplete distance by stitching patches using the spectrum of the LB operator. Intensive numerical experiments demonstrate the effectiveness of the proposed methods.

[1]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[3]  Yaron Lipman,et al.  Sensor network localization by eigenvector synchronization over the euclidean group , 2012, TOSN.

[4]  Hongkai Zhao,et al.  A local mesh method for solving PDEs on point clouds , 2013 .

[5]  Lok Ming Lui,et al.  Brain Surface Conformal Parameterization Using Riemann Surface Structure , 2007, IEEE Transactions on Medical Imaging.

[6]  Wolfgang Spohn,et al.  The Representation of , 1986 .

[7]  Lok Ming Lui,et al.  Variational Method on Riemann Surfaces using Conformal Parameterization and its Applications to Image Processing , 2008 .

[8]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[9]  Henry Wolkowicz,et al.  Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming , 1999, Comput. Optim. Appl..

[10]  Gabriel Taubin,et al.  Geometric Signal Processing on Polygonal Meshes , 2000, Eurographics.

[11]  Fionn Murtagh,et al.  Image Processing and Data Analysis - The Multiscale Approach , 1998 .

[12]  Kim-Chuan Toh,et al.  Semidefinite Programming Approaches for Sensor Network Localization With Noisy Distance Measurements , 2006, IEEE Transactions on Automation Science and Engineering.

[13]  John Scott,et al.  The SAGE Handbook of Social Network Analysis , 2011 .

[14]  Arthur W. Toga,et al.  Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[15]  Tony F. Chan,et al.  A framework for intrinsic image processing on surfaces , 2011, Comput. Vis. Image Underst..

[16]  Guoliang Xu,et al.  Convergent discrete Laplace-Beltrami operators over triangular surfaces , 2004, Geometric Modeling and Processing, 2004. Proceedings.

[17]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[19]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[20]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[21]  Leo Liberti,et al.  Distance Geometry: Theory, Methods, and Applications , 2013, Distance Geometry.

[22]  Wotao Yin,et al.  Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..

[23]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[24]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[25]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[26]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[28]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.

[29]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  M. Maggioni,et al.  Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels , 2008, Proceedings of the National Academy of Sciences.

[31]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[32]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[33]  Stanley Osher,et al.  A Framework for Solving Surface Partial Differential Equations for Computer Graphics Applications , 2000 .

[34]  P. Bérard,et al.  Embedding Riemannian manifolds by their heat kernel , 1994 .

[35]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[36]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[37]  Tsz Wai Wong,et al.  Geometric understanding of point clouds using Laplace-Beltrami operator , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Jon M. Kleinberg,et al.  Reconstructing a three-dimensional model with arbitrary errors , 1996, STOC '96.

[39]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[40]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[41]  Amit Singer,et al.  Global Registration of Multiple Point Clouds Using Semidefinite Programming , 2013, SIAM J. Optim..

[42]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[43]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[44]  Hongkai Zhao,et al.  Multi-scale Non-Rigid Point Cloud Registration Using Robust Sliced-Wasserstein Distance via Laplace-Beltrami Eigenmap , 2014, 1406.3758.

[45]  M. Naderi Think globally... , 2004, HIV prevention plus!.

[46]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[47]  Wotao Yin,et al.  A feasible method for optimization with orthogonality constraints , 2013, Math. Program..

[48]  Kilian Q. Weinberger,et al.  Learning a kernel matrix for nonlinear dimensionality reduction , 2004, ICML.

[49]  Monique Laurent,et al.  Semidefinite optimization , 2019, Graphs and Geometry.

[50]  Xiang Ji,et al.  Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling , 2004, IEEE INFOCOM 2004.

[51]  Arthur W. Toga,et al.  Metric-induced optimal embedding for intrinsic 3D shape analysis , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[52]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[53]  Ron Kimmel,et al.  Geometric curve flows on parametric manifolds , 2007, J. Comput. Phys..

[54]  Jos Stam,et al.  Flows on surfaces of arbitrary topology , 2003, ACM Trans. Graph..

[55]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[56]  Jian Liang,et al.  Solving Partial Differential Equations on Point Clouds , 2013, SIAM J. Sci. Comput..

[57]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[58]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[59]  Jeremy Brandman A Level-Set Method for Computing the Eigenvalues of Elliptic Operators Defined on Compact Hypersurfaces , 2008, J. Sci. Comput..

[60]  Amit Singer,et al.  A remark on global positioning from local distances , 2008, Proceedings of the National Academy of Sciences.

[61]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[62]  Peter Axelsson,et al.  Processing of laser scanner data-algorithms and applications , 1999 .