A review of recent progress on laser-plasma acceleration at kHz repetition rate

We report on recent progress on laser-plasma acceleration using a low energy and high-repetition rate laser system. Using only few milliJoule laser energy, in conjunction with extremely short pulses composed of a single optical cycle, we demonstrate that the laser-plasma accelerator (LPA) can be operated close to the resonant blowout regime. This results in the production of high charge electron beams (>10 pC) with peaked energy distributions in the few MeV range and relatively narrow divergence angles. We highlight the importance of the plasma density profile and gas jet design for the performance of the LPA. In this extreme regime of relativistic laser-plasma interaction with near-single-cycle laser pulses, we find that the effect of group velocity dispersion and carrier envelope phase can no longer be neglected. These advances bring LPAs closer to real scientific applications in ultrafast probing.

[1]  Edward Ott,et al.  Self‐focusing of short intense pulses in plasmas , 1987 .

[2]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[3]  Germán Sciaini,et al.  Femtosecond electron diffraction: heralding the era of atomically resolved dynamics , 2011 .

[4]  Agustin Lifschitz,et al.  Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses , 2014 .

[5]  R. Miller,et al.  Femtosecond Crystallography with Ultrabright Electrons and X-rays: Capturing Chemistry in Action , 2014, Science.

[6]  A. Lifschitz,et al.  Concept of a laser-plasma based electron source for sub-10 fs electron diffraction , 2015, 1510.04119.

[7]  David Alesini,et al.  Direct Measurement of Sub-10 fs Relativistic Electron Beams with Ultralow Emittance. , 2016, Physical review letters.

[8]  G. Lambert,et al.  Femtosecond x rays from laser-plasma accelerators , 2013, 1301.5066.

[9]  S. Rae,et al.  Ionization-induced defocusing of intense laser pulses in high-pressure gases , 1993 .

[10]  J. Nees,et al.  Coherent control of plasma dynamics , 2014, Nature Communications.

[11]  A. Jullien,et al.  Effect of the Laser Wave Front in a Laser-Plasma Accelerator , 2015 .

[12]  K. Nakamura,et al.  Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. , 2014, Physical review letters.

[13]  Ahmed H. Zewail,et al.  4D Electron Microscopy: Imaging in Space and Time , 2009 .

[14]  Rodrigo Lopez-Martens,et al.  High-charge relativistic electron bunches from a kHz laser-plasma accelerator , 2017 .

[15]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[16]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[17]  V Malka,et al.  Observation of laser-pulse shortening in nonlinear plasma waves. , 2005, Physical review letters.

[18]  K. Schmid,et al.  Supersonic gas jets for laser-plasma experiments. , 2012, The Review of scientific instruments.

[19]  M. G. Lagally,et al.  Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator , 2016, Scientific Reports.

[20]  Erik Lefebvre,et al.  Particle-in-Cell modelling of laser-plasma interaction using Fourier decomposition , 2009, J. Comput. Phys..

[21]  T. Ueda,et al.  Ultra-fast pulse radiolysis: A review of the recent system progress and its application to study on initial yields and solvation processes of solvated electrons in various kinds of alcohols , 2008 .

[22]  Helder Crespo,et al.  Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers , 2014, 1802.00599.

[23]  I. V. Glazyrin,et al.  Ionization induced trapping in a laser wakefield accelerator. , 2009, Physical review letters.

[24]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[25]  Sébastien Boutet,et al.  Linac Coherent Light Source: The first five years , 2016 .

[26]  Rajiv C. Shah,et al.  All-optical Compton gamma-ray source , 2012, Nature Photonics.

[27]  R. Coffee,et al.  Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. , 2015, The Review of scientific instruments.

[28]  R. Lopez-Martens,et al.  Anticorrelated Emission of High Harmonics and Fast Electron Beams From Plasma Mirrors. , 2016, Physical review letters.

[29]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[30]  Victor Malka,et al.  Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel , 2010 .

[31]  M. Tzoufras,et al.  Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime , 2007 .

[32]  Erik Lefebvre,et al.  Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator , 2011 .

[33]  Luk,et al.  Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[34]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .

[35]  J. Meyer-ter-Vehn,et al.  Laser wake field acceleration: the highly non-linear broken-wave regime , 2002 .

[36]  W. Mori,et al.  Nonlinear theory for relativistic plasma wakefields in the blowout regime. , 2006, Physical review letters.

[37]  D. Habs,et al.  Few-cycle laser-driven electron acceleration. , 2009, Physical review letters.

[38]  J. Bigot,et al.  Coherent ultrafast magnetism induced by femtosecond laser pulses , 2009 .

[39]  Victor Malka,et al.  Optical phase effects in electron wakefield acceleration using few-cycle laser pulses , 2012 .

[40]  Erik Lefebvre,et al.  Field ionization model implemented in Particle In Cell code and applied to laser-accelerated carbon ions , 2011 .

[41]  Ferenc Krausz,et al.  Density-transition based electron injector for laser driven wakefield accelerators , 2010 .

[42]  J. Cary,et al.  Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. , 2008, Physical review letters.

[43]  M. C. Hoffmann,et al.  Light-Induced Superconductivity in a Stripe-Ordered Cuprate , 2011, Science.

[44]  A. Jullien,et al.  Relativistic electron beams driven by kHz single-cycle light pulses , 2016, Nature Photonics.

[45]  H M Milchberg,et al.  MeV electron acceleration at 1  kHz with <10  mJ laser pulses. , 2017, Optics letters.

[46]  A Pak,et al.  Injection and trapping of tunnel-ionized electrons into laser-produced wakes. , 2009, Physical review letters.

[47]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[48]  W. Mori,et al.  Compressing and focusing a short laser pulse by a thin plasma lens. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Victor Malka,et al.  Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate , 2013 .

[50]  I. V. Glazyrin,et al.  Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz. , 2009, Physical review letters.

[51]  Ferenc Krausz,et al.  Real-time observation of laser-driven electron acceleration , 2011 .

[52]  W. Roquemore,et al.  Relativistic electron acceleration by mJ-class kHz lasers normally incident on liquid targets. , 2015, Optics express.

[53]  Warren B. Mori,et al.  The Physics of the Nonlinear Optics of Plasmas at Relativistic Intensities , 1996 .