Generalized sampling: a variational approach .I. Theory

We consider the problem of reconstructing a multidimensional vector function f/sub in/: /spl Ropf//sup m//spl rarr//spl Ropf//sup n/ from a finite set of linear measures. These can be irregularly sampled responses of several linear filters. Traditional approaches reconstruct in an a priori given space, e.g., the space of bandlimited functions. Instead, we have chosen to specify a reconstruction that is optimal in the sense of a quadratic plausibility criterion J. First, we present the solution of the generalized interpolation problem. Later, we also consider the approximation problem, and we show that both lead to the same class of solutions. Imposing generally desirable properties on the reconstruction largely limits the choice of the criterion J. Linearity leads to a quadratic criterion based on bilinear forms. Specifically, we show that the requirements of translation, rotation, and scale-invariance restrict the form of the criterion to essentially a one-parameter family. We show that the solution can be obtained as a linear combination of generating functions. We provide analytical techniques to find these functions and the solution itself.

[1]  Michael Unser,et al.  Recursive Regularization Filters: Design, Properties, and Applications , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Aslak Tveito,et al.  Box spline interpolation; a computational study , 1992 .

[3]  Richard K. Beatson,et al.  Surface interpolation with radial basis functions for medical imaging , 1997, IEEE Transactions on Medical Imaging.

[4]  William H. Press,et al.  Numerical recipes , 1990 .

[5]  F. Bookstein,et al.  Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .

[6]  M. Vetterli,et al.  Nonseparable two- and three-dimensional wavelets , 1995, IEEE Trans. Signal Process..

[7]  J. L. Walsh,et al.  The theory of splines and their applications , 1969 .

[8]  M. Unser,et al.  Generalized Sampling: A Variational Approach , 2001 .

[9]  J. Zerubia,et al.  A Generalized Sampling Theory without bandlimiting constraints , 1998 .

[10]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[11]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[12]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[13]  Josiane Zerubia,et al.  3D super-resolution using generalized sampling expansion , 1995, Proceedings., International Conference on Image Processing.

[14]  Xiang-Gen Xia,et al.  Vector-valued wavelets and vector filter banks , 1996, IEEE Trans. Signal Process..

[15]  Antonio G. García,et al.  Nonuniform sampling of bandlimited signals with polynomial growth on the real axis , 1997, IEEE Trans. Inf. Theory.

[16]  Eric W. Weisstein,et al.  The CRC concise encyclopedia of mathematics , 1999 .

[17]  L. Schwartz Théorie des distributions , 1966 .

[18]  D. Duffy Green's Functions with Applications , 2015 .

[19]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.

[20]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[21]  Jonathan S. Maltz,et al.  Reproducing kernel Hilbert space method for optimal interpolation of potential field data , 1998, IEEE Trans. Image Process..

[22]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[23]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[24]  Erwin B. Bellers,et al.  New algorithm for motion estimation on interlaced video , 1998, Electronic Imaging.

[25]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[26]  Thierry Blu,et al.  Generalized sampling: a variational approach .II. Applications , 2002, IEEE Trans. Signal Process..

[27]  Charles R. Meyer,et al.  Mutual Information for Automated Multimodal Image Warping , 1996, VBC.

[28]  Pierre Moulin,et al.  Multiscale modeling and estimation of motion fields for video coding , 1997, IEEE Trans. Image Process..

[29]  Michael Unser,et al.  A general sampling theory for nonideal acquisition devices , 1994, IEEE Trans. Signal Process..

[30]  G. Wahba Spline models for observational data , 1990 .

[31]  I J Schoenberg,et al.  SPLINE FUNCTIONS AND THE PROBLEM OF GRADUATION. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Graham Thomas A comparison of motion-compensated interlace-to-progressive conversion methods , 1998, Signal Process. Image Commun..

[33]  J. Ian Richards,et al.  Theory of Distributions: A general definition of multiplication and convolution for distributions , 1990 .

[34]  Gilbert G. Walter,et al.  A sampling theorem for wavelet subspaces , 1992, IEEE Trans. Inf. Theory.

[35]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[36]  H. Landau Necessary density conditions for sampling and interpolation of certain entire functions , 1967 .

[37]  Daniel Gross,et al.  Improved resolution from subpixel shifted pictures , 1992, CVGIP Graph. Model. Image Process..

[38]  W. Madych,et al.  The Recovery of Irregularly Sampled Band Limited Functions via Tempered Splines , 1994 .

[39]  M. Feder,et al.  Introduction to vector sampling expansion , 1998, IEEE Signal Processing Letters.

[40]  Arridge,et al.  Summarising Fluid Registration by Thin-Plate Spline Warps with Many Landmarks , 1997 .

[41]  J. L. Brown,et al.  Sampling reconstruction of N-dimensional band-limited images after multilinear filtering , 1989 .

[42]  A. Papoulis,et al.  Generalized sampling expansion , 1977 .

[43]  P. P. Vaidyanathan,et al.  Generalized sampling theorems in multiresolution subspaces , 1997, IEEE Trans. Signal Process..

[44]  H. Feichtinger,et al.  Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: The $L^p$-theory , 1998 .