Building a stochastic template bank for detecting massive black hole binaries

The coalescence of pairs of massive black holes are the strongest and most promising sources for LISA. In fact, the gravitational wave signal from the final inspiral and merger will be detectable throughout the universe. In this paper we describe the first step in a two-step hierarchical search for the gravitational wave signal from inspiraling massive BH binaries. It is based on a method routinely used in ground-based gravitational wave astronomy, namely filtering the data through a bank of templates. However we use a novel, Monte Carlo based (stochastic), method for laying a grid in the parameter space, and we use the likelihood maximized analytically over some parameters, known as the -statistic, as a detection statistic. We build a coarse template bank to detect gravitational wave signals and to make preliminary parameter estimation. The best candidates will be followed up using a Metropolis–Hasting stochastic search to refine the parameter estimates. We demonstrate the performance of the method by applying it to the Mock LISA data challenge 1B (training data set).

[1]  S. Fairhurst,et al.  A hierarchical search for gravitational waves from supermassive black hole binary mergers , 2008, 0804.3274.

[2]  Report on the second Mock LISA Data Challenge , 2007, 0711.2667.

[3]  A. Królak,et al.  Erratum: Optimal filtering of the LISA data [Phys. Rev. D 70 , 022003 (2004)] , 2007 .

[4]  A three-stage search for supermassive black-hole binaries in LISA data , 2007, 0704.2447.

[5]  E. Porter,et al.  Searching for massive black hole binaries in the first Mock LISA Data Challenge , 2007, gr-qc/0701167.

[6]  E. Porter,et al.  Catching supermassive black hole binaries without a net , 2006, gr-qc/0605135.

[7]  E. Porter,et al.  The search for massive black hole binaries with LISA , 2006, gr-qc/0612091.

[8]  Stanislav Babak,et al.  An Overview of the Mock LISA Data Challenges , 2006 .

[9]  B. S. Sathyaprakash,et al.  A template bank to search for gravitational waves from inspiralling compact binaries: I. Physical models , 2006, gr-qc/0604037.

[10]  National Radio Astronomy Observatory,et al.  A Compact Supermassive Binary Black Hole System , 2006, astro-ph/0604042.

[11]  Carnegie-Mellon,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[12]  A. Królak,et al.  Optimal filtering of the LISA data , 2004, gr-qc/0401108.

[13]  L. Rubbo,et al.  Forward modeling of space borne gravitational wave detectors , 2003, gr-qc/0311069.

[14]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[15]  J. Armstrong,et al.  Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .

[16]  B. Owen,et al.  Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement , 1998, gr-qc/9808076.

[17]  B. Schutz,et al.  Data analysis of gravitational-wave signals from spinning neutron stars. I. The signal and its detection , 1998, gr-qc/9804014.

[18]  Balasubramanian,et al.  Erratum: Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters , 1996, Physical review. D, Particles and fields.

[19]  Luc Blanchet,et al.  Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order , 1996, gr-qc/9602024.

[20]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.