Crystal-chemistry guidelines for noncentrosymmetric A2BO4 Ruddlesden-Popper oxides.

Noncentrosymmetric (NCS) phases are seldom seen in layered A2BO4 Ruddlesden-Popper (214 RP) oxides. In this work, we uncover the underlying crystallographic symmetry restrictions that enforce the spatial parity operation of inversion and then subsequently show how to lift them to achieve NCS structures. Simple octahedral distortions alone, while impacting the electronic and magnetic properties, are insufficient. We show using group theory that the condensation of two distortion modes, which describe suitable symmetry unique octahedral distortions or a combination of a single octahedral distortion with a "compositional" A or B cation ordering mode, is able to transform the centrosymmetric aristotype into a NCS structure. With these symmetry guidelines, we formulate a data-driven model founded on Bayesian inference that allows us to rationally search for combinations of A- and B-site elements satisfying the inversion symmetry lifting criterion. We describe the general methodology and apply it to 214 iridates with A(2+) cations, identifying RP-structured Ca2IrO4 as a potential NCS oxide, which we evaluate with density functional theory. We find a strong energetic competition between two closely related polar and nonpolar low-energy crystal structures in Ca2IrO4 and suggest pathways to stabilize the NCS structure.

[1]  S. Abrahams Systematic prediction of new ferroelectrics in space groups P3(1) and P3(2). , 2003, Acta crystallographica. Section B, Structural science.

[2]  C. Dubourdieu,et al.  HREM study of epitaxially stabilized hexagonal rare earth manganites , 2003 .

[3]  Ichiro Takeuchi,et al.  Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden–Popper homologous series , 2001 .

[4]  M. Subramanian,et al.  Ab initio investigation of the magnetic states of Ca2MnO4 and Ca2MnO3.5 , 2005 .

[5]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[6]  J D Burton,et al.  Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. , 2010, Physical review letters.

[7]  S. Sakai,et al.  Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4 , 2009, Science.

[8]  M. S. Singh Relationship of Sr2RuO4 to the superconducting layered cuprates. , 1995, Physical review. B, Condensed matter.

[9]  First-principles investigation of ferroelectricity in epitaxially strained Pb 2 Ti O 4 , 2005, cond-mat/0501121.

[10]  C. Fennie,et al.  Interface control of emergent ferroic order in Ruddlesden-Popper Sr(n+1)Ti(n)O(3n+1). , 2011, Physical review letters.

[11]  H. Stokes,et al.  Group-theoretical analysis of octahedral tilting in ferroelectric perovskites. , 2002, Acta crystallographica. Section B, Structural science.

[12]  M. Weller,et al.  LnSrScO4 (Ln=La, Ce, Pr, Nd and Sm) systems and structure correlations for A2BO4 (K2NiF4) structure types , 2007 .

[13]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[14]  C. Rao,et al.  A comparative study of the magnetic and electrical properties of perovskite oxides and the corresponding two-dimensional oxides of K2NiF4 structure , 1988 .

[15]  V. Zhandun,et al.  First‐principles calculations of ferroelectric properties in AA′BB′O6 double perovskites with different types of cation ordering , 2013 .

[16]  K. Rabe,et al.  Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations , 2012, 1201.2743.

[17]  J. Akimitsu,et al.  Ba2IrO4: A spin-orbit Mott insulating quasi-two-dimensional antiferromagnet , 2011 .

[18]  William Stafford Noble,et al.  Support vector machine , 2013 .

[19]  K. Yamauchi Theoretical Prediction of Multiferroicity in SmBaMn2O6 , 2013 .

[20]  E. Ascher,et al.  Symmetry and phase transitions: The inverse Landau problem , 1977 .

[21]  V. B. Shirokov,et al.  Tilting structures in spinels. , 2012, Acta crystallographica. Section A, Foundations of crystallography.

[22]  A. Baeza,et al.  Structure and magnetic properties of the weak ferromagnet Sr2−xLaxIrO4 , 2007 .

[23]  Zhang Wei,et al.  A first-principles study of the structural and elastic properties of orthorhombic and tetragonal Ca3Mn2O7 , 2013 .

[24]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[25]  M. Rosseinsky,et al.  Cation Ordering within the Perovskite Block of a Six-layer Ruddlesden-Popper Oxide from Layer-by-layer Growth , 2011 .

[26]  Robert P. Sheridan,et al.  Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling , 2003, J. Chem. Inf. Comput. Sci..

[27]  Wang,et al.  Structural and magnetic studies of Sr2IrO4. , 1994, Physical review. B, Condensed matter.

[28]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[29]  A. Stroppa,et al.  Large ferroelectric polarization in the new double perovskite NaLaMnWO6 induced by non-polar instabilities. , 2011, Physical chemistry chemical physics : PCCP.

[30]  Ming Miao,et al.  Rh2O3 versus IrO2: relativistic effects and the stability of Ir4+ , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  Harold T Stokes,et al.  Tabulation of irreducible representations of the crystallographic space groups and their superspace extensions. , 2013, Acta crystallographica. Section A, Foundations of crystallography.

[32]  James M. Rondinelli,et al.  Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery , 2012 .

[33]  C. Fennie,et al.  Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. , 2011, Physical review letters.

[34]  J. Perez-Mato,et al.  AMPLIMODES: symmetry‐mode analysis on the Bilbao Crystallographic Server , 2009 .

[35]  K. S. Aleksandrov,et al.  Successive Phase Transitions in Crystals of K2MgF4‐Type Structure , 1987 .

[36]  Amit Kumar,et al.  Interplay of Octahedral Tilts and Polar Order in BiFeO3 Films , 2013, Advanced materials.

[37]  W. Rüdorff,et al.  Ternäre Oxide der Übergangsmetalle. VI. Erdalkaliiridium(IV)‐oxide: Struktur von Dicalciumiridium(IV)‐oxid, Ca2IrO4 , 1966 .

[38]  David E. Tanner,et al.  ISODISPLACE: a web-based tool for exploring structural distortions , 2006 .

[39]  T. Mallouk,et al.  Perovskites by Design: A Toolbox of Solid-State Reactions , 2002 .

[40]  M. Hervieu,et al.  Structural investigation of Ca2MnO4 by neutron powder diffraction and electron microscopy , 2004 .

[41]  H. Stokes,et al.  Group-theoretical analysis of octahedral tilting in perovskites , 1998 .

[42]  K. Toda,et al.  Crystal structure determination and ionic conductivity of layered perovskite compounds NaLnTiO4 (Ln = rare earth) , 1996 .

[43]  H. Kee,et al.  Interplay between spin-orbit coupling and Hubbard interaction in SrIrO 3 and related Pbnm perovskite oxides , 2012, 1206.5836.

[44]  David Vanderbilt,et al.  Orthorhombic ABC semiconductors as antiferroelectrics. , 2012, Physical review letters.

[45]  C. Fennie,et al.  Octahedral Rotation‐Induced Ferroelectricity in Cation Ordered Perovskites , 2011, Advanced materials.

[46]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[47]  J. Dunitz,et al.  Towards a Grammar of Crystal Packing , 1994 .

[48]  Clarence Zener,et al.  Interaction Between the d Shells in the Transition Metals , 1951 .

[49]  J. Zuo,et al.  Cation-ordering effects in the single layered manganite La(2/3)Sr(4/3)MnO4 , 2010, 1010.0372.

[50]  P. Hagenmuller,et al.  Relations between structure and physical properties in K2NiF4-type oxides , 1982 .

[51]  T. Mallouk,et al.  KLnTiO4 (Ln=La, Nd, Sm, Eu, Gd, Dy): A New Series of Ruddlesden–Popper Phases Synthesized by Ion-Exchange of HLnTiO4 , 2001 .

[52]  B. Efron Bayes' Theorem in the 21st Century , 2013, Science.

[53]  R. Arita,et al.  Epitaxially Stabilized EuMoO3: A New Itinerant Ferromagnet , 2012, 1209.2032.

[54]  J. E. Millburn,et al.  Evolution of the Structure of the K2NiF4 Phases La2−xSrxNiO4+δ with Oxidation State: Octahedral Distortion and Phase Separation (0.2≤x≤1.0) , 1999 .

[55]  C. Howard,et al.  Symmetry analysis of the structural and magnetic phase transitions in 122 iron arsenides. , 2012, Acta crystallographica. Section B, Structural science.

[56]  Hatch,et al.  Phase transitions in the perovskitelike A2BX4 structure. , 1989, Physical review. B, Condensed matter.

[57]  Krishna Rajan,et al.  Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[58]  Polar octahedral rotations: A path to new multifunctional materials , 2011, 1108.2915.

[59]  C. Fennie,et al.  Turning ABO3 Antiferroelectrics into Ferroelectrics: Design Rules for Practical Rotation‐Driven Ferroelectricity in Double Perovskites and A3B2O7 Ruddlesden‐Popper Compounds , 2012, 1205.5526.

[60]  Jaejun Yu,et al.  Novel Jeff=1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. , 2008, Physical review letters.