Symmetric matrix ensemble and integrable hydrodynamic chains
暂无分享,去创建一个
Antonio Moro | Costanza Benassi | Marta Dell'Atti | A. Moro | Costanza Benassi | Marta Dell'Atti | Marta Dell’Atti
[1] B. S'evennec. G'eom'etrie des syst`emes hyperboliques de lois de conservation , 1994 .
[2] A. Moro. Shock dynamics of phase diagrams , 2013, 1307.7512.
[3] P. Lorenzoni,et al. Exact analysis of phase transitions in mean-field Potts models. , 2019, Physical review. E.
[4] E. Wigner,et al. On the statistical distribution of the widths and spacings of nuclear resonance levels , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.
[5] F. Dyson. Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .
[6] P. Moerbeke,et al. The Pfaff lattice and skew-orthogonal polynomials , 1999, solv-int/9903005.
[7] M. AdlerP. van Moerbeke. Integrals over Grassmannians and random permutations , 2001 .
[8] Edward Witten,et al. Two-dimensional gravity and intersection theory on moduli space , 1990 .
[9] A. Barra,et al. On quantum and relativistic mechanical analogues in mean-field spin models , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[10] K. Takasaki. Differential Fay identities and auxiliary linear problem of integrable hiearchies , 2007, 0710.5356.
[11] A. Moro,et al. Thermodynamic limit and dispersive regularization in matrix models. , 2019, Physical review. E.
[12] M. Pavlov. The Kupershmidt hydrodynamic chains and lattices , 2006, nlin/0604049.
[13] Mark Adler,et al. Integrals over classical groups, random permutations, toda and Toeplitz lattices , 1999, math/9912143.
[14] A. Zabrodin,et al. Elliptic parameterization of Pfaff integrable hierarchies in the zero-dispersion limit , 2014, Theoretical and Mathematical Physics.
[15] K. Khusnutdinova,et al. On the Integrability of (2+1)-Dimensional Quasilinear Systems , 2003, nlin/0305044.
[16] H. Weyl. The Classical Groups , 1940 .
[17] M. Pavlov. Classification of integrable hydrodynamic chains and generating functions of conservation laws , 2006, nlin/0603055.
[18] M. Jimbo,et al. Solitons and Infinite Dimensional Lie Algebras , 1983 .
[19] Maxim Kontsevich,et al. Intersection theory on the moduli space of curves and the matrix airy function , 1992 .
[20] D. J. Benney. Some Properties of Long Nonlinear Waves , 1973 .
[21] B. Dubrovin,et al. Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory , 1989 .
[22] S. P. Tsarëv. THE GEOMETRY OF HAMILTONIAN SYSTEMS OF HYDRODYNAMIC TYPE. THE GENERALIZED HODOGRAPH METHOD , 1991 .
[23] V. Sokolov,et al. Classification of integrable hydrodynamic chains , 2009, 1001.0020.
[24] V. Sokolov,et al. Integrable (2+1)-dimensional systems of hydrodynamic type , 2010, 1009.2778.
[26] K. Takasaki. Auxiliary Linear Problem, Difference Fay Identities and Dispersionless Limit of Pfaff-Toda Hierarchy , 2009, 0908.3569.
[27] Y. Kodama,et al. Combinatorics of Dispersionless Integrable Systems and Universality in Random Matrix Theory , 2008, 0811.0351.
[28] N. Snaith,et al. Random Matrix Theory and ζ(1/2+it) , 2000 .
[29] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[30] G. Parisi,et al. Planar diagrams , 1978 .
[31] P. Moerbeke,et al. Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials , 1995, solv-int/9706010.
[32] E. Ferapontov,et al. Differential-geometric approach to the integrability of hydrodynamic chains: the Haantjes tensor , 2005, nlin/0505013.
[33] C. Porter,et al. STATISTICAL PROPERTIES OF ATOMIC AND NUCLEAR SPECTRA , 1960 .
[34] C. Itzykson,et al. Quantum field theory techniques in graphical enumeration , 1980 .
[35] Maxim V. Pavlov,et al. Integrable hydrodynamic chains , 2003, nlin/0301010.
[36] Mark Adler,et al. Toda versus Pfaff lattice and related polynomials , 2002 .