Symmetric matrix ensemble and integrable hydrodynamic chains

The partition function of the Symmetric Matrix Ensemble is identified with the τ−function of a particular solution of the Pfaff Lattice. We show that, in the case of even power interactions, in the thermodynamic limit, the τ−function corresponds to the solution of an integrable chain of hydrodynamic type. We prove that the hydrodynamic chain so obtained is diagonalisable and admits hydrodynamic reductions in Riemann invariants in an arbitrary number of components.

[1]  B. S'evennec G'eom'etrie des syst`emes hyperboliques de lois de conservation , 1994 .

[2]  A. Moro Shock dynamics of phase diagrams , 2013, 1307.7512.

[3]  P. Lorenzoni,et al.  Exact analysis of phase transitions in mean-field Potts models. , 2019, Physical review. E.

[4]  E. Wigner,et al.  On the statistical distribution of the widths and spacings of nuclear resonance levels , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[6]  P. Moerbeke,et al.  The Pfaff lattice and skew-orthogonal polynomials , 1999, solv-int/9903005.

[7]  M. AdlerP. van Moerbeke Integrals over Grassmannians and random permutations , 2001 .

[8]  Edward Witten,et al.  Two-dimensional gravity and intersection theory on moduli space , 1990 .

[9]  A. Barra,et al.  On quantum and relativistic mechanical analogues in mean-field spin models , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  K. Takasaki Differential Fay identities and auxiliary linear problem of integrable hiearchies , 2007, 0710.5356.

[11]  A. Moro,et al.  Thermodynamic limit and dispersive regularization in matrix models. , 2019, Physical review. E.

[12]  M. Pavlov The Kupershmidt hydrodynamic chains and lattices , 2006, nlin/0604049.

[13]  Mark Adler,et al.  Integrals over classical groups, random permutations, toda and Toeplitz lattices , 1999, math/9912143.

[14]  A. Zabrodin,et al.  Elliptic parameterization of Pfaff integrable hierarchies in the zero-dispersion limit , 2014, Theoretical and Mathematical Physics.

[15]  K. Khusnutdinova,et al.  On the Integrability of (2+1)-Dimensional Quasilinear Systems , 2003, nlin/0305044.

[16]  H. Weyl The Classical Groups , 1940 .

[17]  M. Pavlov Classification of integrable hydrodynamic chains and generating functions of conservation laws , 2006, nlin/0603055.

[18]  M. Jimbo,et al.  Solitons and Infinite Dimensional Lie Algebras , 1983 .

[19]  Maxim Kontsevich,et al.  Intersection theory on the moduli space of curves and the matrix airy function , 1992 .

[20]  D. J. Benney Some Properties of Long Nonlinear Waves , 1973 .

[21]  B. Dubrovin,et al.  Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory , 1989 .

[22]  S. P. Tsarëv THE GEOMETRY OF HAMILTONIAN SYSTEMS OF HYDRODYNAMIC TYPE. THE GENERALIZED HODOGRAPH METHOD , 1991 .

[23]  V. Sokolov,et al.  Classification of integrable hydrodynamic chains , 2009, 1001.0020.

[24]  V. Sokolov,et al.  Integrable (2+1)-dimensional systems of hydrodynamic type , 2010, 1009.2778.

[26]  K. Takasaki Auxiliary Linear Problem, Difference Fay Identities and Dispersionless Limit of Pfaff-Toda Hierarchy , 2009, 0908.3569.

[27]  Y. Kodama,et al.  Combinatorics of Dispersionless Integrable Systems and Universality in Random Matrix Theory , 2008, 0811.0351.

[28]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[29]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[30]  G. Parisi,et al.  Planar diagrams , 1978 .

[31]  P. Moerbeke,et al.  Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials , 1995, solv-int/9706010.

[32]  E. Ferapontov,et al.  Differential-geometric approach to the integrability of hydrodynamic chains: the Haantjes tensor , 2005, nlin/0505013.

[33]  C. Porter,et al.  STATISTICAL PROPERTIES OF ATOMIC AND NUCLEAR SPECTRA , 1960 .

[34]  C. Itzykson,et al.  Quantum field theory techniques in graphical enumeration , 1980 .

[35]  Maxim V. Pavlov,et al.  Integrable hydrodynamic chains , 2003, nlin/0301010.

[36]  Mark Adler,et al.  Toda versus Pfaff lattice and related polynomials , 2002 .