Generalized phase retrieval algorithm based on information measures

An iterative phase retrieval algorithm based on the maximum entropy method (MEM) is presented. Introducing a new generalized information measure, we derive a novel class of algorithms which includes the conventionally used error reduction algorithm and a MEM-type iterative algorithm which is presented for the first time. These different phase retrieval methods are unified on the basis of the framework of information measures used in information theory.

[1]  J. Miao,et al.  Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects , 1998 .

[2]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[3]  Tetsuya Ishikawa,et al.  Image reconstruction of nanostructured nonperiodic objects only from oversampled hard x-ray diffraction intensities , 2003 .

[4]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[5]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[6]  M. Sakata,et al.  Accurate structure analysis by the maximum‐entropy method , 1990 .

[7]  Veit Elser Phase retrieval by iterated projections. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  J. Zuo,et al.  Atomic Resolution Imaging of a Carbon Nanotube from Diffraction Intensities , 2003, Science.

[9]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[10]  J. Miao,et al.  Phase retrieval of diffraction patterns from noncrystalline samples using the oversampling method , 2003 .

[11]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[12]  Mihoko Minami,et al.  Robust Blind Source Separation by Beta Divergence , 2002, Neural Computation.

[13]  G. Newsam,et al.  Necessary conditions for a unique solution to two‐dimensional phase recovery , 1984 .

[14]  K. Pearson,et al.  Biometrika , 1902, The American Naturalist.

[15]  Oscar E. Piro,et al.  Information Theory and the 'Phase Problem' in Crystallography , 1983 .

[16]  M. C. Jones,et al.  Robust and efficient estimation by minimising a density power divergence , 1998 .

[17]  J. Miao,et al.  High resolution 3D x-ray diffraction microscopy. , 2002, Physical review letters.

[18]  D. Collins,et al.  Electron density images from imperfect data by iterative entropy maximization , 1982, Nature.

[19]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[20]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[21]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[22]  A. Hall Applied Optics. , 2022, Science.

[23]  M. V. Rossum,et al.  In Neural Computation , 2022 .

[24]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[25]  L. G. Sodin,et al.  On the ambiguity of the image reconstruction problem , 1979 .